Homework b

1.
$$D_4 = \{e, r, r^2, r^3, s, sr, sr^2, sr^3\}$$

so,
$$\operatorname{ord}(2) = \{r^2, s, sr, sr^2, sr^3\}$$
 and, $\operatorname{ord}(4) = \{r^2, r^3\}$

so, the subgroups of size 2:

$$\{e,r^2\},\{e,s\},\{e,sr\},\{e,sr^2\},\{e,sr^3\}$$

so, the subgroups of size 4:

must be C_4 or KV_4

$$C_4 = \{e, r, r^2, r^3\}, \{e, r^2, sr, sr^3\}, \{e, r^2, s, sr^2\}$$

2. Every reflection of \mathcal{D}_n can be written as as sr^k for some k

so,
$$(sr)^i (sr)^j = s(r^i s) r^j = (sr^i s) r^j = r^{-i} \cdot r^j = r^{j-i}$$

which is a reflection.

- 3. a) $e \in H, xex^{-1} = e \in H'$
 - b) Suppose that $y, z \in H'$

then
$$y=xhx^{-1}$$
 and $z=xgx^{-1}$ for some $h,g\in H$
$$y\cdot z=(xhx^{-1})(xgx^{-1})=xh(x^{-1}x)gx^{-1}=xhgx^{-1}$$
 so $hg\in H\Rightarrow yz\in H'$

- c) $y^{-1} = (xhx^{-1})^{-1} = x^{-1}h^{-1}x = xh^{-1}x^{-1}$ so, $h^{-1} \in H \Rightarrow y^{-1} \in H'$
- d) define $\phi:H\to H'$ by $\phi(h)=xhx^{-1}$ $\phi(hg)=xhgx^{-1}=(xhx^{-1})(xgx^{-1})=\phi(h)\phi(g)$ so relabeling matches.
- e) Suppose that x=e $\label{eq:then} \text{then, } eHe^{-1}=\{ehe^{-1}:h\in H\}=\{h:h\in H\}$
- f) Suppose G is abelian then,

$$xhx^{-1}=hxx^{-1}=h$$
 because $x,h\in G$ so, $xHx^{-1}=\{xhx^{-1}:h\in H\}=\{h:h\in H\}=H$

true for all $x \in G$, so only itself to conjugate.

4. Opposite faces, rotations: 90, 180, 270; $3 \cdot 3 = 9$.

Opposite vertices, rotations: 120, 240; $4 \cdot 2 = 8$

Opposite edges, rotation: 180; $1 \cdot 6 = 6$

So, rigid motions 24

So, one forms a coset of size 24 and the other coset must contain exactly as many

So, there should be 48 elements in the group of symmetries of the cube.