

1. (a) For any $\vec{x} = (x_1, \dots, x_m)^T \in \mathbb{Z}^m$

$$\vec{x} = \sum_{i=1}^m x_i e_i \Rightarrow \phi(\vec{x}) = \sum_{i=1}^m x_i \phi(e_i) = \sum_{i=1}^m x_i w_i = W\vec{x}, \text{ where,}$$

$$W = [\mathbf{w}_1 \ \mathbf{w}_2 \ \cdots \ \mathbf{w}_m]$$

(b) so, $w_1, \dots, w_m \in \mathbb{Q} \Rightarrow$ linearly dependent over \mathbb{Q}

so there are rational coefficients a_1, \dots, a_m not all 0 with $\sum_{i=1}^m a_i w_i = 0$

(c) so choose $0 \neq b \in \mathbb{Z}$ so that $z = ba \in \mathbb{Z}^m - 0$

then $Wz = bWa = 0$

(d) by (a) $\phi(z) = Wz = 0$ with $z \neq 0$

which contradicts injectivity of ϕ

so no isomorphism can exist with $m > n$, so $m \leq n$, same idea to isomorphism:
 $\mathbb{Z}^n \mapsto \mathbb{Z}^m$ gives $n \leq m$

thus $m = n$

$$2. \ 720 = 2^4 \cdot 3^2 \cdot 5$$

$$\alpha(720) = part(4) \cdot part(2) \cdot part(1) = 5 \cdot 2 \cdot 1 = 10$$

3. (a) $\text{part}(1) = 1, \text{part}(2) = 2, \text{part}(3) = 3, \text{part}(4) = 5, \text{part}(5) = 7, \text{part}(6) = 11$

(b) An abelian group made of factors of p means every element has order that is some power of p , so only possible ways to make a product of cyclic pieces whose total exponent is e are:

$$e = 1 \rightarrow \text{splits } p^1 : p \rightarrow 1$$

$$e = 2 \rightarrow \text{splits } p^2 : p \times p \rightarrow 2$$

$$e = 3 \rightarrow \text{splits } p^3 : p^2 \times p, p \times p \times p \rightarrow 3$$

which are the exact partitions of $\text{part}(e)$, which are the number of ways to break e into positive integer that add up to e .

so if n has prime decomposition: $p^{e_1} \times \dots \times p^{e_r}$ then a group of order n must be built by picking:

one choice of structure for e_1, e_2, \dots, e_r , which do not interfere with each other because the multiplication factors are independent

So the total number of possibilities equals product of the choices for each prime:

$$\alpha(n) = \text{part}(e_1) \times \dots \times \text{part}(e_r)$$

(c) $\max \text{part}(e_2)\text{part}(e_3)\text{part}(e_5)$ subject to $e_2 + e_3 + e_5 = 8$ and $e_i \geq 1$

$$(6,1,1): \text{part}(6)\text{part}(1)\text{part}(1) = 11 \cdot 1 \cdot 1 = 11$$

$$(5,2,1): 7 \cdot 2 \cdot 1 = 14$$

$$(4,3,1): 5 \cdot 3 \cdot 1 = 15$$

$$(4,2,2): 5 \cdot 2 \cdot 2 = 20$$

$$(3,3,2): 3 \cdot 3 \cdot 2 = 18$$

$$\text{so } \max (e_2, e_3, e_5) = (4, 2, 2)$$

$$n = 2^4 \cdot 3^2 \cdot 5^2 = 16 \cdot 9 \cdot 25 = 3600$$

and max number of abelian groups is $\text{part}(4)\text{part}(2)\text{part}(2) = 20$