

MA 453
Homework b

1. Suppose $S = \{g \in G : \varphi(g) = g\}$

(a) $\varphi(e) = e \in S$

(b) Suppose that $x, y \in S$

then $\varphi(x) = x$ and $\varphi(y) = y$

so, $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) = x \cdot y \in S$

(c) $\varphi(x^{-1}) = (\varphi(x))^{-1} = (x)^{-1} = x^{-1} \in S$

2. Suppose that $|G| = 91$ and that $\text{ord}(a) \neq \text{ord}(b)$, and that $a, b \neq e_G$

so by Langrange's thm $\Rightarrow |a|, |b| \in \{7, 13, 91\}$ all but 1 because they can not be the identity.

so if any of $|a|$ or $|b| = 91$, then we are done because $\langle a, b \rangle = G$

more interestingly, if $|a| = 7$ and $|b| = 13$ (the other way around works too!)

let $H = \langle a, b \rangle$

so if $a \in H$ and $|a| = 7$ then 7 divides $|H|$ and similarly, 13 divides $|H|$

and since $|H|$ must divide $|G| = 91$ then the only possibility is $|H| = 91$

$\Rightarrow G = H$

3. Define Φ : left cosets $gH \mapsto$ vertices of cube

$$\Phi(gH) = g(v)$$

Now suppose that $gH = g'H$, then $g' = gh$ for some $h \in H$

so, h fixes v , and $g'(v) = gh(v) = g(v)$

so $\Phi(gH) = \Phi(g'H)$, so it is well defined.

so if $\Phi(gH) = \Phi(g'H)$, then $g(v) = g'(v)$

$$\text{so, } (g^{-1}g')(v) = v$$

so, $g^{-1}g' \in H \Rightarrow \Phi$ is injective.

Next, let ω be any vertex, then by the symmetry of the cube pick a $g \in G$ such that $g(v) = \omega$

then $\Phi(gH) = \omega$

so Φ must be surjective

so it is a bijection between the set of left cosets and the set of vertices

$$\text{so, } (G : H) = \#\{\text{left cosets}\} = \#\{\text{vertices}\} = 8$$

4. Order 3 : $\langle r \rangle = \{e, r, r^2\}$

Order 2 : $\langle s \rangle = \{e, s\}$, $\langle rs \rangle = \{e, rs\}$, $\langle r^2, s \rangle = \{e, r^2s\}$

The identity is normal

$\langle r \rangle$ is any index 2, so any index 2 subgroup is normal, $srs = r^{-1} \in \langle r \rangle$ and $r\langle r \rangle r^{-1} = \langle r \rangle$

so, $rsr^{-1} = rsr^2$, using $sr = r^{-1}s$, we get that $rs = sr^{-1} = sr^2$

so, $rsr^2 = (sr^2)r^2 = sr \neq s$

so, $r\langle s \rangle r^{-1} = \langle rs \rangle \neq \langle s \rangle$

so $\langle s \rangle$ is not normal, and similarly for the rest of the two order subgroups.

Next, the only nontrivial proper normal subgroup is $\langle r \rangle$. There is no normal subgroup of order 2.

So any decomposition of $D_3 = H_1 \times H_2$ with non trivial factors would need $|H_1| = 3$ and $|H_2| = 2$

but there is no group such that $|H_2| = 2$

so there is no such product inside D_3

$$5. \phi(7 + 50\mathbb{Z}) = 6 + 15\mathbb{Z}$$

$$\text{let } u = \phi(1 + 50\mathbb{Z}) \in \mathbb{Z}/15\mathbb{Z}$$

$$\text{then } 7u = \phi(7 \cdot (1 + 50\mathbb{Z})) = \phi(7 + 50\mathbb{Z}) = 6 + 15\mathbb{Z}$$

$$\text{so, } 7u \equiv 6 \pmod{15}$$

$$u \equiv 13 \cdot 6 = 78 \equiv 78 - 75 = 3 \pmod{15}$$

$$\text{so } u = 3 + 15\mathbb{Z}$$

$$\text{so, } \phi(x + 50\mathbb{Z}) = 3x + 15\mathbb{Z}, \text{ for all } x \in \mathbb{Z}$$

$$\text{Next, } \ker\phi = \{x + 50\mathbb{Z} : \phi(x + 50\mathbb{Z}) = 0 + 15\mathbb{Z}\}$$

$$\text{so, want } x \equiv 1 \pmod{5}$$

$$\text{so } \ker\phi = \{0, 5, 10, 15, 20, 25, 30, 35, 40, 45\} + 50\mathbb{Z}$$

$$\text{we need } 3x \equiv 3 \pmod{15}$$

$$\text{so, } 3(x - 1) \equiv 0 \pmod{15}$$

$$\text{so } 5|(x - 1)$$

$$\text{so, } x \equiv 1 \pmod{5}$$

$$\text{so there are ten classes: } 1, 6, 11, 16, 21, 26, 31, 36, 41, 46 \pmod{50}$$

$$\text{and each satisfies } \phi(x + 50\mathbb{Z}) = 3 + 15\mathbb{Z}$$