

1. $\phi(n) = 42$

We know that $\phi(n) = n - 1$ if n is prime.

so, $n - 1 = 42 \Rightarrow n = 43$ and 43 is prime!

so, one $n = 43$

Next, there is no n such that $\phi(n) = 15$

By definition for $n > 2$, $\phi(n)$ is even, so can't get an n such that $\phi(n) = 15$. Ouch!

2. Essentially, we want $\phi(n) = 18$

We know that $\phi(n) = n - 1$ if n is prime.

so, $n - 1 = 18 \Rightarrow n = 19$ and 19 is prime!

so, $p^{a-1}(p - 1) = 18$

try $p = 3$: $3^{a-1}(3 - 1) = 18 \iff 3^a = 27 \iff a = 3$

so, $n = 27$

try $p = 2$: $2^{a-1}(2 - 1) = 18 \iff 2^a = 36$, Ouch! We can't!

Next, we know that $\phi(19) = 18$ and $\phi(2) = 1$ and $\gcd(2, 19) = 1$

so, $\phi(19 \cdot 2) = \phi(19) \cdot \phi(2) = 18 \Rightarrow n = 38$

Similarly, we know that $\phi(27) = 18$ and $\phi(2) = 1$ and $\gcd(2, 27) = 1$

so, $\phi(27 \cdot 2) = \phi(27) \cdot \phi(2) = 18 \Rightarrow n = 54$

3. Suppose that $\text{ord}(a) = t$

$$\begin{aligned} \text{So, } \text{ord}(a^k) &= \frac{t}{\text{gcd}(t, k)} \\ \frac{t}{\text{gcd}(t, k)} &= 18 \iff t = 18 \cdot \text{gcd}(t, k) \\ t &= 18 \cdot \underbrace{\text{gcd}(t, k)}_{\text{either 1 or 5}} \Rightarrow t = 18, 90 \end{aligned}$$

so, possible orders for a are 18, 90

Similarly, $t = 20 \cdot \text{gcd}(t, 5)$

$t = 20, 100$

thus, possible orders for a are 20, 100

4. (a) $x = 21s + 3$ for some $s \in \mathbb{Z}$

$$3 + 21s \equiv 4 \pmod{10}$$

$$21s \equiv 1 \pmod{10}$$

$$s \equiv 1 \pmod{10} \text{ because } 21 \pmod{10} \equiv 1$$

$$s - 1 = 10t \Rightarrow s = 10t + 1$$

$$x = 21(10t + 1) + 3 = 210t + 24$$

$$\text{so, } x \equiv 24 \pmod{210}$$

(b) $y = 10s + 9$ for some $s \in \mathbb{Z}$

$$9 + 10s \equiv 2 \pmod{3}$$

$$10s \equiv -7 \pmod{10} \equiv 2 \pmod{3}$$

$$s \equiv 2 \pmod{3} \text{ because } 10 \pmod{3} \equiv 1$$

$$s - 2 = 3t \Rightarrow s = 3t + 2$$

$$y = 10(3t + 2) + 9 = 29 + 30t$$

$$\text{so, } y \equiv 29 \pmod{30}$$

Next, $29 + 30t \equiv 5 \pmod{7}$

$$30t \equiv -24 \pmod{7} \iff 2t \equiv 4 \pmod{7} \iff t \equiv 2 \pmod{7}$$

$$\text{so, } t = 2 + 7u$$

$$29 + 30(2 + 7u) \equiv 5 \pmod{7}$$

$$89 + 210u \equiv 5 \pmod{7} \Rightarrow y \equiv 89 \pmod{210}$$