

MA 453
Homework b

1. Suppose that $a, b \in U(p)$

$$\text{then } sq(ab) = (ab)^2 = a^2b^2 = sq(a)sq(b)$$

Hence group morphism

$$\text{Next, define } \ker = \{a \in U(p) : a^2 \equiv 1 \pmod{p}\}$$

$$\text{so if } a^2 \equiv 1 \pmod{p} \Rightarrow a^2 - 1 \equiv 0 \pmod{p} \Rightarrow (a-1)(a+1) \equiv 0 \pmod{p}$$

so p is prime we are in a field and one of the factors is $0 \pmod{p}$

so, $a \equiv 1 \pmod{p}$ or $a \equiv -1 \pmod{p}$

Since $p > 3 \Rightarrow 1 \neq -1$, so there are only two distinct elements.

$$\text{Ker}(sq) = \{1, -1\}$$

$$|U^2(p)| = |im(sq)| = \frac{|U(p)|}{|\text{Ker}(sq)|} = \frac{p-1}{2}$$

2. Suppose that $a, b \in U(p)$ and that $a, b \notin U^2(p)$

By problem 1 $\Rightarrow U^2(p)$ is a subgroup of index 2

so $U(p)$ splits into two cosets

$$U(p) = U^2(p) \cup cU^2(p)$$

so for fixed $c \notin U^2(p)$, all elements not in $U^2(p)$ are in $cU^2(p)$

so for a, b , there are some $h_1, h_2 \in U^2(p)$ such that

$$a = ch_1 \text{ and } b = ch_2$$

$$ab = ch_1 \cdot ch_2 = c^2h_1h_2$$

and $c^2 \in U^2(p)$ and $h_1h_2 \in U^2(p)$ because it is a subgroup

Therefore, $ab \in U(p)U(p) = U^2(p)$

What this means is that non-square times non-square gives a square

3. Suppose that $k \in U(p)$ such that $k^2 = -1 \pmod{p}$

then $x^4 + 1 = x^4 - (-1) \equiv x^4 - k^2$

so, $x^4 + 1 \equiv (x^2 - k)(x^2 + k)$ factors into two quadratics

4. Suppose that there is $k \in U(p)$

such that $k^2 \equiv -2 \pmod{p}$

$$x^4 + 1 = x^4 - 2x^2 + 1 - (-2)x^2 = (x^2 - 1)^2 - (-2)x^2$$

$$\equiv (x^2 - 1)^2 - (k^2)x^2$$

$$= ((x^2 - 1) + (kx))((x^2 - 1) - (kx))$$

$$= (x^2 - 1 + kx)(x^2 - 1 - kx)$$

5. Suppose that $k \in U(p)$ such that $k^2 \bmod p$

$$\begin{aligned}x^4 + 1 &= x^4 + 2x^2 + 1 - 2x^2 = (x^2 + 1)^2 - 2x^2 \\&\equiv (x^2 + 1)^2 - (k^2)x^2 \\&= ((x^2 + 1) + (kx))((x^2 + 1) - (kx)) \\&= (x^2 + 1 + kx)(x^2 + 1 - kx)\end{aligned}$$