

MA 453
Homework b

1. $5x^4 + 3x^3 + 4 = (4x^2 + 3x)(3x^2 + 2x + 2) = (x + 4)$

$$3x^2 + 2x + 2 = (3x + 4)(x + 4) + 0$$

$$gcd(f, g) = x + 4$$

2. a) $\mathbb{Z}[x]$

$$x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1) \text{ which are irreducible}$$

$x^4 + 1$ has no linear roots because it has no solution in \mathbb{Z}

$$\text{so, } x^4 + 1 = (x^2 + ax + b)(x^2 + cx + d) = x^4 + (a+c)x^3 + (ac + b + d)x^2 + (ad + bc)x + bd$$

so our only choice is if $b, d = \pm 1$

but if that happen then we need a $c \in \mathbb{Z}$ such that $c^2 = 2$ which can't happen ouch.

Hence, $x^4 + 1$ is already irreducible

b) $\mathbb{Z}/5\mathbb{Z}$

$x^4 + 1$ has no linear factors and thus it must factor into two quadratics

$$x^4 + 1 = (x^2 + ax + b)(x^2 + cs + d)$$

$$= x^4 + (a + c)x^3 + (ac + b + d)x^2 + (ad + bc)x + bd$$

this happens $\iff b, d = 1, 1$ or $2, 3$ or $3, 2$ (\leftarrow I'll omit this case it is the same as $2, 3$)

so if $b, d = 1 \Rightarrow c^2 = 2$ but there is no such $c \in \mathbb{Z}/5\mathbb{Z}$, ouch

in the case where $b, d = 2, 3$

$$c^2 = 5 \iff c = 5 \text{ and } a = 0, b = 2, d = 3$$

$$\text{so, } x^4 + 1 = (x^2 + 2)(x^2 + 5x + 3) = (x^2 + 2)(x^2 + 3)$$

$x^4 - 1$ has 4 linear factors

$$\text{so } x^4 - 1 = (x - 1)(x - 2)(x - 3)(x - 4)$$

3. So there are 8 possible choices

$$\{x^2, x^2 + x + 1, x^2 + 2x + 2, x^2 + x + 2, x^2 + 2x + 1, x^2 + x, x^2 + 2x, x^2 + 1, x^2 + 2\}$$

and out of the possible choices only $\{x^2 + 2x + 2, x^2 + x + 2, x^2 + 1\}$ have no roots and thus irreducible monic polynomials.

4. So there are 8 possible choices

$$\{x^3, x^3 + x^2 + x + 1, x^3 + x^2 + x, x^3 + x^2, x^3 + x, x^3 + 1, x^3 + x + 1, x^3 + x^2 + 1\}$$

and out of the possible choices only $\{x^3 + x + 1, x^3 + x^2 + 1\}$ are irreducible monic polynomials.