

MA 453**Homework a**

1. (a) For all $i \in I$, we have $e(i) = i$, so $e \in S_n^I$

(b) Suppose that $\sigma, \sigma' \in S_n^I$

so, $\sigma(i) = i$ and $\sigma'(i) = i$ for all $i \in I$

$$(\sigma \cdot \sigma')(i) = \sigma(\sigma'(i)) = \sigma(i) = i$$

so, $\sigma \cdot \sigma' \in S_n^I$

(c) $\sigma^{-1}(i) = \sigma^{-1}(\sigma(i)) = i$

so $\sigma^{-1} \in S_n^I$

Next, so $S_n^I \rightarrow$ permutations that fix I

so it tells us how it permutes the $n - |I|$ remaining elements.

which is exactly $S_{n-|I|}$

$$2. \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 3 & 7 & 1 & 5 & 2 \end{pmatrix}$$

In cycle notation: $(1\ 4\ 7\ 2\ 6\ 5)(3)$

For σ^2 , is just a shift by 2: $(1\ 7\ 6)(4\ 2\ 5)(3)$

For σ^3 , is just a shift by 3: $(1\ 2)(4\ 6)(7\ 5)(3)$

For σ^4 , is just a shift by 4: $(1\ 6\ 7)(4\ 5\ 2)(3)$

For σ^{-1} , is just a shift by -1: $(1\ 5\ 6\ 2\ 7\ 4)(3)$

3. So the cyclic subgroup of order m can be generated by a cycle of length m .

so we pick the boring cycle $(1\ 2\ 3\ \dots\ 233)$

so, $\langle (1\ 2\ 3\ \dots\ 233) \rangle$

4. If $n = \text{ord}(\sigma) \Rightarrow \frac{n}{\text{gcd}(n, i)} = \text{ord}(\sigma^i)$

so, $\frac{10}{\text{gcd}(10, i)} = 10$

so all i such that $\text{gcd}(10, i) = 1$

so, $i = \{1, 3, 7, 9\}$