1. Suppose that $p_1, ..., p_k$ is a finite list of primes

let
$$c = p_1 \cdot p_2 \cdot \dots \cdot p_k + 1$$

so, pick any p_i , where $1 \le i \le k$

so,
$$gcd(c, p_i) = gcd(p_i, (p_1 \cdot p_2 \cdot ... \cdot p_k + 1) \bmod p_i)$$

so, $p_1, ..., p_k$ are all primes so for any p_i , we get remainder of 1

so,
$$gcd(p_i, (p_1 \cdot p_2 \cdot ... \cdot p_k + 1) \mod p_i) = gcd(p_i, 1) = 1$$

For every p_i we get that $gcd(p_i, c) = 1$

so, c is a coprime of every p_i by definition. (\star)

Next suppose that there are finitely many primes $p_1,...,p_k$ and suppose that $N=p_1\cdot ...\cdot p_k+1$

by
$$(\star)$$
 $gcd(N, p_i) = 1$ for every $1 \le i \le k$

so, none of $p_1, ..., p_k$ divides N

so, every integer N > 1 has a prime divisor

so, N must have a prime divisor q, s.t $q \notin p_1, ..., p_k$

q is a new prime! Ouch!

2. Suppose that S is the set of $\mathbb N$ s.t every $s \in S$ has two different prime factorizations and $S \neq \emptyset$ and let $n = p_1 \cdot \ldots \cdot p_k = q_1 \cdot \ldots \cdot q_l$ be the min in S, that is $n \leq s$ for all $s \in S$

so,
$$p_1 = \min\{p_i\}$$
 and $q_1 = \min\{q_i\}$

by Euclid's lemma $\Rightarrow p_1|q_1\cdot\ldots\cdot q_l$

so,
$$p_1 = q_j$$
 for some $1 \le j \le l$

similarly, Euclid's lemma $\Rightarrow q_1|p_1 \cdot ... \cdot p_k$

so,
$$q_1 = p_i$$
 for some $1 \le i \le k$

since
$$q_1 \le q_2 \le ... \le q_l \Rightarrow q_1 \le q_j = p_1 \Rightarrow q_1 \le p_1$$

and similarly,
$$p_1 \leq p_2 \leq ... \leq p_k \Rightarrow p_1 \leq p_k = q_1 \Rightarrow p_1 \leq q_1$$

Aha!
$$p_1 = q_1$$

so,
$$\frac{n}{p_1} = p_2 \cdot ... p_k = q_2 \cdot ... q_l$$

so, if
$$p_i \neq q_j$$
 for all $i = j$

then there is an
$$m \in S$$
 s.t $m = \frac{n}{p_1} < n$

but this contradicts that n is the min. element of S

so the factorizations must be identical

so, k-1=l-1 and $p_i=q_j$ for all i=j, where $i,j\geq 2$ and we showed earlier that $p_1=q_1$

which contradicts that $n \in S$

so
$$S = \emptyset$$

3. c = a + 4

$$b+2 = a+4 \Rightarrow b = a+2$$

 $(a, a+2, a+4) \leftarrow$ prime tuple must have form

so case a=2

a=2,b=4,c=6 can't happen because b and c are not primes. Ouch!

Since all primes > 2 are odd then (a, a + 2, a + 4) must all be odd and also they must be consecutive prime numbers.

So, among three consecutive odd numbers one must be divisible by $3\,$

So, the only prime triple that works must be (3, 5, 7)

4. Base case: $n = 1 \Rightarrow 11^1 - 4^1 = 7 \mod 7 \equiv 0$

Now suppose we've checked up to the n=k case, then we know $(11^k-4^k) \bmod 7 \equiv 0 \pmod{\star}$

so,
$$11^{k+1} - 4^{k+1} = 11^k \cdot 11 - 4^k \cdot 4 = (11 \cdot 11^k - 11 \cdot 4^k) + (11 \cdot 4^k - 4^k \cdot 4)$$

$$11 \cdot (11^k - 4^k) + 4^k (11 - 4) = 11 \cdot (11^k - 4^k) + 4^k (7)$$

so,
$$4^k \cdot 7 \mod 7 \equiv 0$$
 trivial, and $11 \cdot (11^k - 4^k) \mod 7 \equiv 0$ by (\star)

So,
$$11 \cdot (11^k - 4^k) + 4^k(7) \mod 7 \equiv 0$$

Hence true for the n = k + 1 case.