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1 Intro

Game theory is the study of mathematical models of strategic interactions. Moreover, it analyzes situations in which
two or more decision-makers, called players, make choices that affect one another. A game, in this context, refers to
when players contend with each other according to a list of rules.

Game theory provides a mathematical framework for studying strategies among multiple players. In such envi-
ronments, each player’s outcome depends not only on their own decisions but also on the decisions made by others.
A strategy is a complete and predetermined plan describing how a player will act in every possible circumstance of
the game. A strategy may be pure (always selecting the same action) or mixed (randomizing over available actions
according to assigned probabilities).

When players select actions from a finite set, each combination of actions produces an outcome. A numerical
value, called the payoff, is assigned to each outcome and reflects the reward or loss obtained by a player. Payoffs are
commonly represented in a payoff matrix, where each entry quantifies the gain or loss resulting from the player’s
actions.

For this project, we focus on two-player zero-sum games. A zero-sum game is one in which the total payoff
across players sum up to zero. Thus, any gain for one player corresponds exactly to a loss for the other. Because of
this structure, we can describe the entire interaction using a single payoff matrix A. Each entry A;; represents the
payoff to Player1 (P1) when P1 selects action ¢ while P2 selects action j. Since the game is zero-sum, P2’s payoft is
exactly —A;;.

In many zero-sum settings, relying solely on pure strategies is not optimal. If a player repeats the same ac-
tion, the opponent may exploit this predictability. This motivates the use of mixed strategies, defined as probability
distributions over a player’s available actions. By randomizing, a player avoids predictability and therefore avoids
systematic exploitation.

The minimax principle formalizes optimal play in adversarial environments. Under minimax, each player selects
a strategy that maximizes their own guaranteed payoff assuming the opponent behaves in the most hostile manner
possible. For P1, this means maximizing the minimum payoff they can be forced to receive and for P2, it means
minimizing the maximum payoff that P1 can secure. This principle forms the foundation of equilibrium analysis in
zero-sum games and has significant influence in economics, optimization, artificial intelligence, and reinforcement
learning.

2 A Motivating Example

To motivate the minimax framework, consider the classical zero-sum game Rock, Paper, and Scissors (RPS). In RPS,
if P1 wins they get +1 and P2 gets -1, and vice versa and if they tie they both get 0, so every possible outcome adds
up to zero. Therefore we conclude that RPS is a zero-sum game and we can proceed to define the payoff matrix for



P1 as:

where rows and columns correspond to Rock, Paper, and Scissors, respectively.
Note that if P1 plays Rock every time, then P2 can always respond with Paper and achieve a guaranteed payoff
of 1. Hence, any fixed pure strategy is exploitable.

Let P1 choose a mixed strategy, we denote z; as the probability of choosing i so in our example we’ll have the
following:

r = (zg,Tp,rs), zpt+zpt+zs=1 x>0
Next, we will calculate the expected payoffs for P1 if P2 plays:

+ Rock (column 1) is

(A‘r)l :O$R+1xp+(—1)l‘szxp_xs7
« Paper (column 2) is

(Ax)2:(_1)'xR+O'$p+1~$S:—xR+xS7

« Scissors (column 3) is
(Ax)s=1-2p+(-1)-zp+0-zg =2aR —TP.

If P1 wants to guarantee a payoff of at least v, these three values must each be at least v, thus we get the following
constraints:

xP_'TSZ’Ua
—xrp+xs > v,
TR —ITp 2>V,

together withxp +2p + x5 =1 and zr,zp,zs > 0.
The minimax objective for P1 is

max min{xp —rs, —TR + g, J)R—l‘p},
TR,TP,TS

Let us formulate the primal LP:

max v
TR,TP,TS,V

subjectto xzp —xzg > v,
— TR+ x5 2>V,
TR —Tp 2V,
Tr+xp + x5 =1,
TR, xp,Ts > 0.

Note that at optimum all three payoff constraints are tight, meaning:
rp —T§ =V, —TR+XTs=V, TR—Tp=71.
So we can solve this system of equalities and zr + zp + z5 = 1. We get the following solution:

1
Z'R:xpzl'szg.

To find v, we use, v = zp — Tg:



Hence the LP yields the optimal mixed strategy and game value:

111
‘T*: (3,3,3), U*:O.

What these results we can conclude the following: (1) P1’s optimal strategy is to play Rock, Paper and Scissors with
equal probability so no option can be exploited, (2) the value of v* = 0 means that when both players play optimally,
neither has an advantage and the expected payoff is zero.

The dual LP is:
min w
YR,YP,Ys,w

subjectto yp —ys < w,

— YR+ Ys S w,
Yr —Yyp S W,
Yr+yp+ys =1,
Yr,yp,Ys = 0.
We can solve in the same way as in the primal, and verify that the dual LP agrees with the primal LP.
ro(332) weo

A miracle happens the primal and dual have the same optimal values, in class we learned that this is no miracle this
is strong duality and if we apply strong duality to zero-sum games we obtain the minimax theorem.

3 Generalization to Arbitrary Zero-Sum Games

Any finite two-player zero-sum game can be represented by an m x n payoff matrix A. P1 chooses z € R"" and P2

chooses y € R,
m n
xi207zl‘i:17 yjzoazyjzl
i=1 j=1

The expected payoff is | Ay.
P1 wants to solve:

max min(Ax);,
z

and P2 wants:

min max(A"y);.
y 3

The Minimax Theorem guarantees that both expressions have equal value:

maxminz ' Ay = minmaxz ' Ay,
T Yy Yy T

and that optimal mixed strategies exist.

3.1 Primal LP Formulation

For a general payoff matrix A € R™*™, let x € R" be P1’s mixed strategy and let v be the guaranteed payoff. The

LP for P1is

max v
z,v

subjectto (Ax); >v forallj=1,...,n,

m
E €Ty = 1,
i=1



(Az); = Ay,
=1

3.2 Dual LP Formulation

We now look at the dual LP, which corresponds to P2’s optimization problem. In general, the dual of the primal
minimax LP for Player 1 is

min w
R

subjectto (A'y); <w foralli=1,...,m,

n
Zyj =1,
j=1

y; = 0.

4 The Colonel Blotto Game

The Colonel Blotto Game is a zero=sum game where two players (who are described as “generals”) must allocate
limited resources simultaneously across many battlefields. These resources can span from soldiers to money to even
just units. The goal of this game is to allocate more resources to the same battlefield compared to your opponent;
the total payoff is how many battlefields are won.

Players don’t know how many resources their opponent is allocating to each specific battlefield, so the player must
develop a strategy that can win against most of the opponents battlefields.

While this may seem very military focused, it has many real life examples. Some which include: political cam-
paigns, security allocation, sport strategies, marketing, college admission, and more. Since players can place many
resources into many battlefields, the number of allocations grows as the battlefields/resources grow, making finding
the optimal solution almost impossible to solve by hand.

For a general game, let there be n battlefields indexed by 57 = 1,2,...,n. Two players; A and B, have their bud-
gets, B4 and Bp respectively. Players A and B choose an allocation vector a = (aq, ..., a,), b = (b1, ..., b,) with
constraints:

a; >0, a; <Ba,b; >0,y b < Bg,
j=1 j=1

A the payoff is in the winner takes all” style, which gives player A’s utility as:

Ua(a,b) = Zvj -1{a; > b;}

j=1
Where v; is the value of battlefield j. The utility of B is typically the negative (since it is zero sum) and is —U 4.

4.1 Political Campaign

The specific example we plan to use is the political campaign problem, to be exact, a presidential campaign in the
US. Since there are 51 states plus DC, these will be our “battlefields”. The “resources” will be the monetary budget
allocated to each state. Each state also has a set about of electoral votes, making winning certain states more impor-
tant than winning others.

We have written an algorithm to simulate an election. Of course, this is not entirely accurate as the allocations



A_alloc B_alloc Winner
.412728 .407855
.110657 .010129
.414348 .786872
.603656 .088955
.424167 .632197
.786446 .508921
.600838 .694538
.947459 .262212
.828709 .994354
.190601 .440243
.028216 .822077
.687203 .926019
.033207 .110250
.720511 .199744
.247520 .574171

m
<

CA 54.
X 40.
FL 30.
NY 28.
PA 19.
IL 19.
OH 17.
GA 16.
NC 16.
MI 15.
NJ 14.
VA 13.
WA 12.
AZ 11.
IN 11.
A total EV: 249.0

B total EV: 289.0
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Figure 1: Example allocations and payoffs

per state are randomized and in real life there would be more strategic approaches based on different parameters,
but this is a basic example. As there are 51 battlefields and many resources, it is almost impossible to do by hand.

https://github.com/naibail01/MA-421-Colonel-Blotto-Algo.git
In our algorithm our code shows the top 15 most important states by electoral votes, the allocations each player

made to each of those states, and which player won each state. At the bottom it shows the total payoff which is
calculated by adding all the electoral votes that each player won.


https://github.com/naibai101/MA-421-Colonel-Blotto-Algo.git

5 Resources

https://courses.cs.duke.edu/compsci570/fall19/1pandgames.pdf
https://vanderbei.princeton.edu/542/lectures/lec8.pdf

https://abel.math.harvard.edu/archive/20spring06/handouts/Lesson24-GameTheory
andLPhandout . pdf

https://people.csail.mit.edu/rivest/pubs/BBDHx18.pdf


https://courses.cs.duke.edu/compsci570/fall19/lpandgames.pdf
https://vanderbei.princeton.edu/542/lectures/lec8.pdf
https://abel.math.harvard.edu/archive/20_spring_06/handouts/Lesson24_-_Game_Theory_and_LP_handout.pdf
https://abel.math.harvard.edu/archive/20_spring_06/handouts/Lesson24_-_Game_Theory_and_LP_handout.pdf
https://people.csail.mit.edu/rivest/pubs/BBDHx18.pdf
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