The key challenge for Al is to find out how to write programs that, to the extent possible,
produce rational behavior from a smallish program rather than from a vast table.

GOAL BASED AGENTS
Goal-based agents
/_ ”—----‘.‘"‘\ ~
’ .. Sensors
N
What the world
C How the world evolves is like now
] o5 Goals provides a crude hinary
@’hm my actions do Wlil;ul ljg\il;ltit:nlf}rw é d|5.t|nc{‘f|0n be:weF::n the age n:
S being “happy” or “not happy
5
=
- —t
m ‘iNhalh acnl;tmn I
- shou O now
‘ But it can not tell exactly how
happy the agent is...
\ Agent Actuators \'; /

UTILITY_BASED AGENTS

Utility-based agents

[PO
- _—
~< Sensors =
N
State \

\R:'hat the world
(How the world evolves is like now

¥

(What my actions do W&a{ éi)v;g:ig: gke

._.- : How happy I will be
in such a state

What action I
should do now

Y
\A gent Actuators

Designing a rational agent is
to design an agent that
maximize its expected
utility!

juduwuoIiAuyg

)

Spectrum of state representations

® O
(o} (o}
o [
B » C (&) s -
|- -
1 ||
B C
(a) Atomic (b) Factored (¢) Structured
Examples:

Atomic: West Lafayette, Gary, Chicago

Factored Representation: GPS coordinates, current speed, current direction, current gas in
the tank

Structured representation: Objects -> Car A, Car B, my car, traffic signs/ Relations: Car A is
in front of Car B, eftc...

SEARCH PROBLEMS AND SOLUTIONS
Search: Assumptions on task environment:

Fully observable: states can be fully determined by observations

single agent: only one agent is involved

Deterministic: outcomes of actions are certain

Static: the world does not change on its own

Discrete: a finite number of individual states exist rather than a continuous space of options

Known: the result functions of actions are known
BASICS
Yucky terminology!!

State: s -> describe the configuration of the environment.
Initial state: s; -> the state that an agent starts in.
Actions (Operators):a, activities which move the agent from one state to another.

Actions(s) -> returns a finite set of actions that can be executed in state s

Transition model (Successor function): describes what each action does.

Result(s, a) -> returns the state that results from doing action « at state s

State space: the set of states reachable from the initial state by applying any sequence of

actions

usually represented as a graph
Goal state: a set of possible states to reach

IsGoal(s) -> indicates whether a state s belongs to the goal states.

Step/Action cost: ActionCost(s',a, s) -> the cost of taking an action a which moves the
agent from state s to s’

Path: a sequence of action
Path Cost: the cost of a path
Solution: a path from the initial state to a goal state.

Note the quality of a solution is measure by its path cost.
Optimal solution: Any solution with the lowest path cost.

Search algorithm: the algorithm that determines which actions should be tried in which order
to find a path from the initial state to a goal state.

Example
1A B 2 I 7 - R - : .x\
*:/(Q =l “\ ,gﬁ o8 o5k ggb\u/lk
i .
3 [~ \I u 4| B //{‘. - — — —
:.’([?‘ 4 - R R 2 -
pSeg ; 9388 /_?L(TJ L|'/_ .dfxl éﬁ wk L(—\ éﬂ éia' /_\ll!
° - A R > il N - e b/
5 EE 6 B N { “) R“‘"“x.,_ - P ,./’, b
,é]x« /_(;4 s s < § \T/
23R 23R - — R _——=
L[|=A =] A)g
7 (B 2 B /‘. \ : e/
= = O O
s s
» States — Robot locations, A dirty? B dirty? + Goal test — no dirt
* Actions — Left, Right, Suck * Path cost — 1 per operation

Note: continuous state space does NOT satisfy search's assumption on task environment.

Also, the world state includes every last detail of the environment.
A search state keeps only the details needed for problem solving(abstraction)

Be smart in how you formulate your problem because it can get ugly fast!
Goal: Place 8 queens on the chessboard such that no queen attacks any other,

A queen attacks any piece in the same row, column, or diagonal

* Idea 1: (Complete-state formulation) * Idea 2: (Incremental formulation)

* State: Position of all 8 queens * State: The row number of the n
on the board queens (1 < n < 8) in the leftmost
« Actions: Select one queen and n columns, one per column
move it up/down/to the Actions: Add a queen to any row in
left/to the right the leftmost empty column such

that it is not attacked by any
existing queens

Size of state space:
64X 63 X--X57~1.8x%x 104! Size of state space: 2057

The state does not need to be of the same “length”!

