function DepthLimitedSearch(problem, 1) -> return a solution, or failure or
cutoff
frontier <- LIFO queue(stack)
frontier <- {initial state}
result <- failure
repeat
if fringe = null then break
node <- POP(frontier)
if IsGoal(node) then return correspoding solution
if Depth(node) >= 1 then result <- cutoff
else
for a in Action(node):
a' = Result(node, a)
INSERT(frontier, a')
return result

Iterative Deepening Search (IDS)

Idea: get DFS's space advantage with BFS's time / shallow-solution advantages

* Run a DLS with depth limit 1. If no solution...
* Run a DLS with depth limit 2. If no solution...
* Run a DLS with depth limit 3.
* |sn’t that wastefully redundant?
* Generally, most work happens in the bottom
level searched, so not so bad
* Compare IDS, BFS (b = 10,d = 5):
 N(BFS)=1+10+ 100+ 1,000 + 10,000 + 100,000
=111,111
* N(IDS)=5+50 + 400 + 3,000 + 20,000 + 100,000
= 123,455

Bi-directional Search

Desirable when 0(b%/?) +

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path.

Uniform Cost Search

Strategy: expand
cheapest node first:

Implementation:

- e
Frontier is a priority

i @ 3 @ 9 ® 1
queue (priority: - =
: 5 17 (OM
cumulative cost) @4 Q‘PH /@\ /@\ CP @
Cost < @6 a W13 ©7 o q f
contours /\ I | /\\
p a @ a ¢
I N
a1© @m0 e
\ a

Uniform Cost Search (UCS) Properties

* Time complexity
* Processes all nodes with cost less than cheapest
solution

* |f that solution costs C* and actions cost at least
e , then the “effective depth” is roughly C* /e

« Takes time O (b(+1C7/eD)

* Space complexity
* Has roughly the successors of the last tier, so
« O(b(1+IC7/eD)y

C*/e “tiers’)

* Is it complete? O

* Yes, assuming best solution has finite cost and

min action cost is positive

* Is it optimal?

* Yes

Summary
Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited Deepening (if applicable)

Complete? Yes! Yes!:2 No No Yes' Yes!4
Optimal cost? Yes? Yes No No Yes? Yes34
Time o9 o™ C/dy om™ o) O(b%) o(b¥2)
Space o(d) o™’y Ombm) O(bf) O(bd) O(bY?)

b <- branching factor
m <- maximum depth of the search tree

d <- depth of the shallowest solution or is m when there is no solution
| <-is the depth limit

()! complete if b is finite and the state space either has a solution or is finite
()2 complete if all action costs are > € > 0

() cost optimal if action costs are all identical

()* if both direction are breadth-first or uniform-cost

BEST-FIRST SEARCH

Choose a node n with minimum value of some evaluation function f(n)

Priority queue ordered by f

Example:
BFS -> expand the shallowest node first, f(n) = Depth(n)

INFORMED SEARCH

The search algorithm uses domain specific hints about the location of goals

hints are formularized through a heuristic function h(n)

h(n) = estimated cost of the cheapest path from the state at node n to a goal state
|dea: Best-First Search where f(n) contains h(n)

HEURISTIC FUNCTION:

A non-negative function that estimates how close a state is to a goal, designed for a
particular problem

if n is a goal state = h(n) =0
Ex: Manhattan distance, Euclidean distance

GREEDY SEARCH

Choose f(n) = h(n)
Expand the node that seems closest
What can wrong?

A* search

f(n) = g(n) + h(n)

g(n) <- path cost from start node to current node n (Uniform cost search)

h(n) <- estimate of path cost from n to the goal (Greedy best-first search)

Expands the node n if the estimated cost of the solution passing through it is the lowest
Combines uniform cost and greedy search

A* search is optimal if h(n) is an underestimate of the actual cost from n to the goal

* Uniform-cost orders by path cost, or backward cost g(n)

* Greedy orders by goal proximity, or forward cost h(n)
* A* Search orders by the sum: f(n) = g(n) + h(n)

Note, A* should not terminate when a goal state enters the frontier, instead terminate when a
goal stats is expanded (exists the frontier)

h=2 Frontier Expand
(S, 3) (S, 3)
(A, 4) (B, 3) (B, 3)
(A, 4) (G, 5) (A, 4)
(G, 4) (G, 5) (G, 4)

Return Path: S->A->G
with cost 4

