
Iterative Deepening Search (IDS)

function DepthLimitedSearch(problem, l) -> return a solution, or failure or

cutoff

frontier <- LIFO queue(stack)

frontier <- {initial state}

result <- failure

repeat

if fringe = null then break

node <- POP(frontier)

if IsGoal(node) then return correspoding solution

if Depth(node) >= l then result <- cutoff

else

for a in Action(node):

a' = Result(node, a)

INSERT(frontier, a')

return result

Idea: get DFS's space advantage with BFS's time / shallow-solution advantages





Summary

b <- branching factor
m <- maximum depth of the search tree



BEST-FIRST SEARCH

Example:
BFS -> expand the shallowest node first, f(n) = Depth(n)

INFORMED SEARCH

HEURISTIC FUNCTION:

GREEDY SEARCH

A* search

d <- depth of the shallowest solution or is m when there is no solution
l <- is the depth limit
()1 complete if b is finite and the state space either has a solution or is finite
()2 complete if all action costs are ≥ ϵ ≥ 0

()3 cost optimal if action costs are all identical
()4 if both direction are breadth-first or uniform-cost

Choose a node n with minimum value of some evaluation function f(n)

Priority queue ordered by f

The search algorithm uses domain specific hints about the location of goals
hints are formularized through a heuristic function h(n)

h(n) = estimated cost of the cheapest path from the state at node n to a goal state
Idea: Best-First Search where f(n) contains h(n)

A non-negative function that estimates how close a state is to a goal, designed for a
particular problem
if n is a goal state ⇒ h(n) = 0

Ex: Manhattan distance, Euclidean distance

Choose f(n) = h(n)

Expand the node that seems closest
What can wrong?

f(n) = g(n) + h(n)

g(n) <- path cost from start node to current node n (Uniform cost search)
h(n) <- estimate of path cost from n to the goal (Greedy best-first search)
Expands the node n if the estimated cost of the solution passing through it is the lowest
Combines uniform cost and greedy search



Note, A* should not terminate when a goal state enters the frontier, instead terminate when a
goal stats is expanded (exists the frontier)

A* search is optimal if h(n) is an underestimate of the actual cost from n to the goal


