
How to effectively formulate a search problem

state:

useful tips:

efficiency check:

SEARCH ALGORITHMS

search algorithm: takes a search problem as input and returns a solution.

state space graph: a mathematical representation of a search problem.

Search tree

all the information need to find a solution
nothing but this information

search state is not world state!
search state does not need to be of the same length!

try to define states and actions in a way that decrease the size of the state space as much
as possible.

Nodes represent world configurations
Edges represent successors (results of actions)
Goal is to reach the goal node/s
In a state space graph, each state occurs only once.

A "what if" tree of action and their outcomes
root node = initial state
Children correspond to successors
Nodes show states
Branches correspond to actions that lead to those states



Example:

STATE SPACE GRAPHS VS SEARCH TREES

SEARCHING WITH A SEARCH TREE

PSEUDOCODE FOR TREE SEARCH ALGORITHMS

Expand out potential plans (tree nodes)
Maintain a frontier (fringe -> set of nodes that have been reached but not expanded) of
partial plans under consideration
Try to expand as few tree nodes as possible.



HOW TO EVALUATE A SEARCH ALGORITHM

UNIFORMED SEARCH STRATEGIES

Uniformed search: The search algorithm has no additional information about states beyond
what has been provided in the problem formulation.

DEPTH FIRST SEARCH

strategy: expand the deepest node first
depth: number of actions in a path (node)

Function TreeSearch(problem) returns a solution or failure

frontier <- {initial_state}

repeat

if frontier empty then return failure

node <- POP(frontier)

if isGoal(node) then return corresponding solution

for a in Actions(node):

s' = Result(node, a)

INSERT(frontier,s')

Completeness - Does it always find a solution? (if one exists)
Optimality - Does it find the best solution? (Lowest path cost)
Time complexity - How many nodes are processed to find a solution?
Space complexity - How many nodes need to be stored in the frontier?



implementation: frontier is a LIFO stack



Breadth-First Search

strategy: expand the shallowest node first
depth: number of actions in a path(node)
implementation: frontier is a FIFO queue






