How to effectively formulate a search problem
state:

all the information need to find a solution

nothing but this information
useful tips:

search state is not world state!
search state does not need to be of the same length!

efficiency check:

try to define states and actions in a way that decrease the size of the state space as much
as possible.

SEARCH ALGORITHMS
search algorithm: takes a search problem as input and returns a solution.
state space graph: a mathematical representation of a search problem.

Nodes represent world configurations

Edges represent successors (results of actions)
Goal is to reach the goal node/s

In a state space graph, each state occurs only once.

Search tree

A "what if" tree of action and their outcomes

root node = initial state

Children correspond to successors

Nodes show states

Branches correspond to actions that lead to those states

Example:

This is now / start

T

09R 09

Move LE‘V Vacuum wﬂve Right

A ,—~|| B A ; B A g{;}

STATE SPACE GRAPHS VS SEARCH TREES

(\ Each NODE in the
State Space Graph search tree is

reached by a PATH
in the state space
graph.

Algorithms
construct both on
demand — and they
construct as little
as possible.

SEARCHING WITH A SEARCH TREE

Expand out potential plans (tree nodes)

Maintain a frontier (fringe -> set of nodes that have been reached but not expanded) of
partial plans under consideration

Try to expand as few tree nodes as possible.

PSEUDOCODE FOR TREE SEARCH ALGORITHMS

Function TreeSearch(problem) returns a solution or failure
frontier <- {initial_state}
repeat
if frontier empty then return failure
node <- POP(frontier)
if isGoal(node) then return corresponding solution
for a in Actions(node):
s' = Result(node, a)
INSERT(frontier,s')

HOW TO EVALUATE A SEARCH ALGORITHM

Completeness - Does it always find a solution? (if one exists)
Optimality - Does it find the best solution? (Lowest path cost)

Time complexity - How many nodes are processed to find a solution?
Space complexity - How many nodes need to be stored in the frontier?

UNIFORMED SEARCH STRATEGIES

Uniformed search: The search algorithm has no additional information about states beyond
what has been provided in the problem formulation.

DEPTH FIRST SEARCH

strategy: expand the deepest node first
depth: number of actions in a path (node)

implementation: frontier is a LIFO stack

Frontier Expand

(S, 0) (S, 0)
(d,1) (e1) (p, 1) (d, 1)
(b,2) (c,2) (e, 2) (e1) (p, 1) (b, 2)
(3,3) (2 (62 (e1) (p,1) (a, 3)
(.2) (,2) (e,1) (p, 1) (c, 2)

Depth-First Search (DFS) Properties

* Time complexity

* DFS could process the whole tree (and
m>d)

1 node
* If m is finite, takes time O(b™) b nodes
* Space complexity b% nodes
* Only need to store siblings on pathto ™M tiers<
root, so O(bm)
* Is it complete?
» m could be infinite 2 No b™ nodes

* Is it optimal?
* No, it finds the “leftmost” solution,
regardless of depth or path cost

Breadth-First Search

strategy: expand the shallowest node first
depth: number of actions in a path(node)
implementation: frontier is a FIFO queue

(d, 1)
(b, 2)
(b, 2)

(b, 2)

shallowest solution
* Let depth of shallowest solution be d

Frontier
(S, 0)
(e, 1) (p, 1)
(c,2) (e 2)
(c,2) (e 2)
(c,2) (e 2)

(e, 1)
(h, 2)

(h, 2)

(p, 1)
(r,2)

(r, 2)

(p, 1)

(a, 2)

Expand
(S, 0)
(d, 1)
(e, 1)
(p, 1)

(b, 2)

Breadth-First Search (BFS) Properties

* Time complexity
* BFS processes all nodes above

» Search takes time 0(bh%)

* Space complexity

* Needs to store roughly the successors

of the last tier, so 0(b%)
* Is it complete?

* Yes, d must be finite if a solution exists

* Is it opti

mal?

* Only if costs are all 1

d tiers

1 node
b nodes

b2 nodes

bd nodes

b™ nodes

