
Recap of Local Search:

Basic Idea:

Characteristics:

CONTINUOUS STATE SPACE

useful when path to goal state does not matter/solving pure optimization problem

Only keep a single "current" state
Heuristic function to evaluate the "goodness" of the current state
Try to improve iteratively

Don't save paths followed

Low memory requirements (usually constant)
Effective - can often find good solutions in extremely large state spaces



GRADIENT DESCENT

Iterative Algorithm:

Steepest descent: dt = −Δf(xt)

1. Start with some guess x0

2. Iterate t = 1, 2, 3, . . .

Select direction dt and stepsize nt

xt+1 ← xt + ntdt

check stopping condition, Δf(xt) ≈ 0



HOW TO SELECT STEPSIZE?

When stepsize is too large:

Types of Games:
Axes:

Algorithms need to calculate a strategy (policy) which recommends a move (action) from each
position (state).

PROBLEM FORMULATION

Solution for a player is a policy:

Constant: nt = 1/L for suitable L

Diminishing: nt → 0 with ∑tn
t = ∞ , (nt = 1/t)

Deterministic vs Stochastic
One, two or more players

Zero sum vs general sum
Perfect information (can you see the state) vs Partial information

States: S (start at S0)

Players P  = {1, ..., N} ) (take turns)
ToMove(s): The player whose turn it is to move in state s
Actions(s): The set of legal moves in state s

Result(s, a): Transition function, state resulting from taking action a in state s
IsTerminal(s): A terminal test, true when game is over

Utility(s,p): S × P → R Final numeric value to player p when the game ends in state s



Zero-Sum Games:

General games:

OPTIMAL DECISION IN GAMES & ADVERSARIAL SEARCH

S → A

Agents have opposite utilities (values on outcomes)
Can then think of outcome as a single value that one maximizes, and the other minimizes
Adversarial, pure competition

Agents have independent utilities (values on outcomes)
Cooperation, indifference, competition, and more are all possible





Minimax Efficiency:

Efficient of minimax search

Just like (exhaustive) DFS
Time: O(bm)

Space: O(bm)




