Recap of Local Search:
useful when path to goal state does not matter/solving pure optimization problem
Basic ldea:

Only keep a single "current" state
Heuristic function to evaluate the "goodness" of the current state
Try to improve iteratively

Don't save paths followed
Characteristics:

Low memory requirements (usually constant)
Effective - can often find good solutions in extremely large state spaces

CONTINUOUS STATE SPACE

Example
Problem:
* Place an airport such that the sum of F==C3——F==F==F==F -3} -}
squared straight-line distances from each H E L |
city to airport is minimized. He]
Formulation: i i o
* Location of airport x = [x,, x,] 5 A T A Sy
* Cost function == B4 --F--F--haspas]
5 2 » _(00) HE
c f) =33 (cin—x1)" + (ci2— x2)

* How to handle continuous state?
» Discretize into intervals of §

* Check “neighbors” and conduct local
search

* E.g., check f(x + [6,0]) — f(x)

GRADIENT DESCENT

c fx) = 13=1(Ci,1 — xl)z + (Ci,z — xz)z

* Without discretization?

* When discretization approaches 0

-
* Gradient Vf = %:;1 =

_6x2-

lim fx148,x21)—f([x1,x2])

0-0 &
lim fx,x2+8D—fF([x1.%2])
0-0 &

* Gradient points to the direction that f(x) increases

the fastest

* Move in the opposite direction of gradient (steepest

slope)

Iterative Algorithm:

Start with some guess z°
lterate t =1,2,3,...

Select direction d* and stepsize n'
il — 2t + ntd

check stopping condition, A f(z) ~ 0

Steepest descent: dt = —A f(z?)

a2 2 of _
fQx1,%2) = x1 + %3 Froak
Initial State ﬂ Step Size
ox
(2,3) (4,6) 1
(-2,-3) (-4,-6) 0.5

(0,0) (0, 0)

HOW TO SELECT STEPSIZE?

Constant: n' = 1/L for suitable L
Diminishing: n* — 0 with >",n’ = 0o , (n* = 1/t)

When stepsize is too large:

4000 x10

3000 -

f(x) 2000 -
1000 - \ /

0_ i ——

-50 =25 0 xl§5 50

Types of Games:
Axes:

Deterministic vs Stochastic
One, two or more players
Zero sum vs general sum

Perfect information (can you see the state) vs Partial information

Algorithms need to calculate a strategy (policy) which recommends a move (action) from each
position (state).

PROBLEM FORMULATION

States: S (start at Sp)

Players P ={1, ..., N}) (take turns)

ToMove(s): The player whose turn it is to move in state s

Actions(s): The set of legal moves in state s

Result(s, a): Transition function, state resulting from taking action a in state s
IsTerminal(s): A terminal test, true when game is over

Utility(s,p): S x P — R Final numeric value to player p when the game ends in state s

Solution for a player is a policy:

S— A
Zero-Sum Games:

Agents have opposite utilities (values on outcomes)
Can then think of outcome as a single value that one maximizes, and the other minimizes

Adversarial, pure competition
General games:

Agents have independent utilities (values on outcomes)
Cooperation, indifference, competition, and more are all possible

OPTIMAL DECISION IN GAMES & ADVERSARIAL SEARCH

Value of a State

Non-Terminal States:

Value of a state: _ i
The best achievable Vis) = s'edlllﬁgin(«':) Vi)

outcome (utility) from
that state ,

\

Terminal States:
V(s) = known

Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:

Vis) =, max V(s')\ sesmceontoray !)
s’ Esuccessors(s) /

-8 -5 -10 +8

Terminal States:
V(s) = known

Adversarial Search (Minimax)

* Deterministic, zero-sum games:
* Tic-tac-toe, chess, checkers
* One player maximizes result
* The other minimizes result

* Minimax search:
* A state-space search tree
* Players alternate turns

* Compute each node’s minimax value:
the best achievable utility against a
rational (optimal) adversary

Minimax values:
computed recursively

133 max
S%;////\\\\§;Z min
JTANEVAN
[6]
Terminal values:
part of the game

Minimax Implementation

\

def max-value (state):
initialize v = -«
for each successor of state:
v = max (v, min-value (successor))
return v

| J
V(s) = max V(s

8" Esuccessors(s)

Minimax Efficiency:

Efficient of minimax search
Just like (exhaustive) DFS
Time: O(b™)

Space: O(bm)

def min-value(state) :
initialize v = +e
for each successor of state:

return v

_

v = min(v, max-value (successor))

\

J

V(s = min V(s)

sEsuccessors(s’)

Generative Adversarial Network (GAN)
An adversarial game of image generation

Generator Discriminator

Objective: Fool the

discriminator Fake / Real Apart
neural networks

Generator & Discriminator are Objective: Tell the

(Continuous search space!)

