
Recap

A* Optimality

TREE SEARCH

GRAPH SEARCH

Consistency ⇒ admissibility

In general most admissible heuristics tend to be consistent.

SEARCH AND MODELS

In many problems, path is irrelevant, the goal state itself is the only thing we care about.

Sometimes the goal test itself is unclear, in reality we are solving an optimization problem.

TRAVELING SALESMAN

DISCRETE SPACE

Local Search

A* uses both backward costs and (estimates of ) forward costs

Heuristic design is key: often use relaxed problems
A* is optimal with admissible (tree search) / consistent heuristic (graph search)

A* is optimal if heuristic is admissible

UCS is a special case (h(n) = 0 for all n)

A* optimal if heuristic is consistent
UCS optimal (h = 0 is consistent)

Search operates over models of the world
The agent does not actually try all the plans out in the real world

Planning is all "in simulation"
Search is only as good as the model (Ouch! Bottlenecked!)

Given a list of cities and distances between each pair of cities, what is the shortest
possible route that visits each city exactly once and returns to the origin city?

Useful when path to goal state does not matter/solving pure optimization problem



BASIC IDEA:

CHARACTERISTICS:

HILL-CLIMBING SEARCH

CHALLENGES FOR HILL CLIMBING

SOME VARIANTS OF LOCAL HILL-CLIMBING

Only keep a single "current state"

Heuristic function to evaluate the "goodness" of the current state
Improve by iterations
Don't save paths followed

Low memory requirements - usually constant
Effective -> find good solutions in extremely large state spaces

State space -> landscape

Location = state
Elevation = evaluation of state (objective function value)

Continually move in direction of increasing value (try to maximize obj. function)

function HillClimbing(problem) return a state that is a local maximum
current <- initial state
repeat:

best neighbor <- current
for state in Neighbors(current):

if state.value > best Neighbor.value
best Neighbor <- state

if best Neighbor.value > current.value:
current <- best Neighbor

else:
return current

Local maxima; when it is reached, there is no way to backtrack or move out of that
maximum
Plateau; can save difficult time finding its way off a flat portion of the state space landing

Ridges; can produce a series of local maxima that are difficult to navigate out of

Stochastic hill-climbing; select randomly from all moves that improve the value of the
objective function



SIMULATED ANNEALING

Note ΔE < 0 and T− > 0 ⇒ e
ΔE/T− > 0

LOCAL BEAM SEARCH

ANALOGY

Random-restart hill-climbing; conducts a series of hill-climbing searches, starting from
random positions, very frequently used in general AI

Idea: mostly goes "uphill" but occasionally travels "downhill" to escape local optimum
Likelihood to go downhill is controlled by a "temperature schedule"
more and more "conservative" as the search progresses (less likely to go downhill)

function SimulatedAnnealing(problem, schedule) return a solution state
current <- initial state
for t = 1 to infty

T <- schedule(t)
if T = 0 then return current
next <- a randomly selected neighbor of current
DELTAE = next.value - current.value
if DELTAE > 0:

current <- next
else:

current <- next with probability e^{DELTAE/T}

Similar to hill-climbing, but
keep track of k current states rather than just a single current state
select the k best neighbors among all neighbors of the k current states

Hill-climbing: " trying to find the top of Mt. Everest in a thick fog while suffering amnesia"
Local beam search: "Doing this with several friends, each of whom has a short-range radio
and an altimeter"

Stochastic beam search: "select successors at random weighted by value"



GENETIC ALGORITHM

DISCRETE STATE SPACE

Ex: bounding box prediction (as search)

Inspired by evolutionary biology

Mimics the evolution of a population under natural selection

Object detection: single object



Idea: check all possible boxes, find the box that contains "the object"


