Recap

A* uses both backward costs and (estimates of) forward costs
Heuristic design is key: often use relaxed problems
A* is optimal with admissible (tree search) / consistent heuristic (graph search)

A* Optimality
TREE SEARCH

A* is optimal if heuristic is admissible

UCS is a special case (h(n) = 0 for all n)
GRAPH SEARCH

A* optimal if heuristic is consistent
UCS optimal (h = 0 is consistent)

Consistency = admissibility
In general most admissible heuristics tend to be consistent.
SEARCH AND MODELS

Search operates over models of the world
The agent does not actually try all the plans out in the real world
Planning is all "in simulation"

Search is only as good as the model (Ouch! Bottlenecked!)
In many problems, path is irrelevant, the goal state itself is the only thing we care about.
Sometimes the goal test itself is unclear, in reality we are solving an optimization problem.

TRAVELING SALESMAN

Given a list of cities and distances between each pair of cities, what is the shortest
possible route that visits each city exactly once and returns to the origin city?

DISCRETE SPACE
Local Search

Useful when path to goal state does not matter/solving pure optimization problem

BASIC IDEA:

Only keep a single "current state"
Heuristic function to evaluate the "goodness" of the current state
Improve by iterations

Don't save paths followed
CHARACTERISTICS:

Low memory requirements - usually constant
Effective -> find good solutions in extremely large state spaces

HILL-CLIMBING SEARCH

State space -> landscape
Location = state
Elevation = evaluation of state (objective function value)

Continually move in direction of increasing value (try to maximize obj. function)

function HillClimbing(problem) return a state that is a local maximum
current <- initial state
repeat:
best neighbor <- current
for state in Neighbors(current):
if state.value > best Neighbor.value
best Neighbor <- state
if best Neighbor.value > current.value:
current <- best Neighbor
else:
return current

CHALLENGES FOR HILL CLIMBING

Local maxima; when it is reached, there is no way to backtrack or move out of that
maximum

Plateau; can save difficult time finding its way off a flat portion of the state space landing
Ridges; can produce a series of local maxima that are difficult to navigate out of

SOME VARIANTS OF LOCAL HILL-CLIMBING

Stochastic hill-climbing; select randomly from all moves that improve the value of the
objective function

Randome-restart hill-climbing; conducts a series of hill-climbing searches, starting from
random positions, very frequently used in general Al

SIMULATED ANNEALING

Idea: mostly goes "uphill" but occasionally travels "downhill" to escape local optimum
Likelihood to go downhill is controlled by a "temperature schedule"
more and more "conservative" as the search progresses (less likely to go downhill)

function SimulatedAnnealing(problem, schedule) return a solution state
current <- initial state
for t =1 to infty
T <- schedule(t)
if T = 0 then return current
next <— a randomly selected neighbor of current
DELTAE = next.value - current.value
if DELTAE > 0:
current <- next
else:
current <- next with probability e”~{DELTAE/T}

Note AE <0and T— > 0 = 2E/T_ > 0

LOCAL BEAM SEARCH

Similar to hill-climbing, but
keep track of k current states rather than just a single current state
select the k best neighbors among all neighbors of the k current states

ANALOGY

Hill-climbing: " trying to find the top of Mt. Everest in a thick fog while suffering amnesia"

Local beam search: "Doing this with several friends, each of whom has a short-range radio
and an altimeter"

Stochastic beam search: "select successors at random weighted by value"

GENETIC ALGORITHM

[Begin]

A4

[tital population

-
v
Calculate the fitness value

v

Selection

¥

Crossover

¥

Diutation

{"" s termination cuﬁﬁ\ No

satisfied? —

Inspired by evolutionary biology

Mimics the evolution of a population under natural selection
DISCRETE STATE SPACE
Ex: bounding box prediction (as search)

Object detection: single object

Idea: check all possible boxes, find the box that contains "the object"
Bounding Box Prediction (as Search)

Hill Climbing Search
max f (Image, box)
0X

How to represent a state?

* Bounding box: A
* Top-left and bottom right corners , 'Y
* (x1ylx2y2)

* How to define a neighborhood?
e (x1+1,y1,x2,y2)

Search formulation used in computer
vision research (Li’22, Yeh’17, Yeh’18):

Extract Spatlal Features

* (x1-1y1x2,y2) = e -
* (x1,y1+1,x2,y2) ‘ L ﬂ j
¢ (x1,y1-1,x2,y2) KT | swmrms S

Construct Score Map 5 J

Ll T l

L]

CLIF Text
Encoder

