Name:
Luis Castellanos
Student ID:
33489855

Purdue University (Fall 2025)
(CS44000: Large-scale Data Analytics
Homework 1

IMPORTANT:
e Upload a pdf file with answers to Gradescope.

e Please use the either the latex template or word template to write down your answers and
generate a pdf file.

— Latex template: https://www.cs.purdue.edu/homes/csjgwang/CS440/template.tex
— Word template: https://www.cs.purdue.edu/homes/csjgwang/CS440/template.docx

Problem Score

1

Total



https://www.cs.purdue.edu/homes/csjgwang/CS440/template.tex
https://www.cs.purdue.edu/homes/csjgwang/CS440/template.docx

Problem 1 [20 points]

1. During the map phase we read each document and tokenize the words in the following key-
value (word, docID), since we know there are no duplicates within each document there is no
need to count within one document.

During the shuffle phase we proceed to group same words from all files (word, list of do-
cID)

Finally we enter the reduce phase, we aggregate docIDs and remove duplicates if any, and we
get (word, v3), in our case v3 is a list of values

Example: (Hello, 1), (World, 1), (Hello, 2), (Data, 2), (Big, 3), (Data, 3) — (Hello, list(1,2)),
(World, list(1)), (Data, list(2,3)), (Big, list(3))

— (Hello, 1,2), (World, 1), (Data, 2,3), (Big, 3) (I started counting at 1 but in the example
they start at 0)

Map(docId, documentText):
words = documentText.split()
for w in words:
Emit(w, docId)

Reduce(word, docIdList):
unique = RemoveDuplicates(docIdList)
Emit(word, unique)




Problem 2 [20 points]

1. In regular DBs we have logs, checkpoints, write-ahead logging. We must restore the state
exactly before crash, hence we have strict durability and consistency. So the pros is that we
have strong guarantees and safe for transactions. The cons is that there is heavy overhead,
slow in massive distributed joins. Hadoop does not have transaction logs, if a crash occurs,
we just need to reexecute failed tasks, because tasks are deterministic and input stored in
HDEFS. So, the pros are simple, fault-tolerant and scalable. The cons we have no ACID and
it is not suited for live transactional workloads.

2. In Hadoop, we have recovery by rerunning map/reduce tasks, there is no lineage tracking.
For Spark, we have RDD lineage graph to recompute only lost partitions, not entire job. This
is a faster recovery and avoids full recomputation. The cons are that the lineage graph must
be stored.



Problem 3 [20 points]

1. We use HBase when data is sparse, wide, semi-structured or column oriented. Also, when
we need masive scalability and random read/write. (DB row store becomes inefficient when
most columns are empty)

The advantages of using HBase are that column families are stored separately, which is more
efficient for sparse storage. It is distributed and fault-tolerant via HDFS, and and we have
high throughput and random access.

2. HDFS is optimized for sequential access to very large files and batch processing, which makes

it good for log storage and offline analytics. However, it cannot support random reads well
or small updates because files are written once and acessed by the bunch.
HBase, built on top of HDFS, provides a schema layer that enables random cell access and
updates but requires additional coordination. In short, HDFS is simpler and best for high-
throughput scans, while HBase is more complex but enables faster data lookup and modifi-
cation.



Problem 4 [20 points]

1. RDDs allow Spark to maintain fault tolerance through lineage rather than replication. If
something like a partition is lost, Spark reconstructs only that partition using previous his-
tory, rather than restarting the job. This recovery model enables fast distributed computation
and efficient in-memory processing.

2. Spark delays execution until an action occurs so that it can analyze the entire plan and opti-
mize it before running. This avoids computing intermediate results that are never used and
reduces unnecessary communication between nodes, improving performance and planning ef-
ficiency.

3. A distributed join is a wide dependency because keys must be shuffled across the cluster
before merged. This causes each output partition to depend on multiple parent partitions,
which requires full data redistribution.



Problem 5 [20 points]

1. The nice thing about BSP is that each superstep completes fully before the next begins, en-
suring consistent views of graph state. However, the con is that strict synchronization means
slow nodes delay the entire system and communication overhead increases.

2. Separating compute from storage allows independent scaling and lets systems maintain cheap
persistent storage while compute resources scale only when needed. The drawback is latency,
since data must be accessed remotely and consistency, it must be maintained across several
distributed components.



