How to build your IT infrastructure?

Buy servers
how many? how much memory, disk, CPU, GPU?
how many users (particularly for special occasions)
Simple solution: provision for peak load, but underutilize in most times
Build a data center
where to physically put the servers?
what if the machines are crashed?
what if we need a software upgrade
cooling techniques
skilled engineers
Soln: All is possible without clod but at what cost?

Cloud Computing

Pre-Cloud
buying renting

AED. .
=] =]

cloud computing is about buying vs renting

instead of buying hardware, just renting an instance from a cloud provider (Amazon AWS,
Google Cloud)

“Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction.”

Key Characteristics

Pay as you go
only pay for what you use with fine-grained metering, no up-front commitment (CPU
per hour, memory per GB)
Elasticity



users can release resources if not needed or request additional resources if
needed, ideally automatically (severless computing)

Virtualization
all the resources (cpu, memory, disk, network) are virtualized, no software is
bounded to hardware

resources are pooled to serve multiple users (multi-tenancy)

Automation
No human interaction (start/stop a machine, crash, backup)
everything is managed by cloud providers

Cloud Native Databases

Treat each cloud machine the same as in-house machine

run existing database systems directly

Cloud-native dbs are re-architectured to fully leverage the cloud infrastructure
resource/storage disaggregation

resource/storage pooling

Storage-compute separation
-Independent scaling
- Better resource utilization

(compute) [@E L
| Small local disk
e -3

Implications

DB software level needs to be aware of the underlying hardware-level resource
disaggregation

software level disaggregation

in order to enable more optimizations
Distributed database architecture needs to be changed

from shared nothing to shared storage



System Architecture

- g - - — - - = — - = - == =

Storage & compute disaggregation in the cloud

Compute (master) Compute (replica)

Godl
Reduce network I/O

Distt Storage Engine age

Main idea:

Log is the database

only write redo logs on network

push log applicator to storage tier
Asynchronous processing

materialize pages in background
Buffer cache

to avoid network 1/0O

can rad pages upon cache miss

I/0 traffic in traditional DB
Mirrored MySQL

redo log data
Active Standby
insfance § | Insiance i bin log msl- double-write
o I o > frm files

vAmuzon v

Elastic Block EBS

Store (EBS)
oV ;) « Step 1, 3, 4 are synchronous

v . .
e T « Amplifies both latency and jitter

Amazon $3
I/O traffic in Aurora

Only write redo log records



all steps asynchronous
4/6 quorum storage
7.7X less data movement

Writes

writes (trxns) send logs to storage asynchronously
durability: each log is durable (ack) with 4/6 quorums
Volume Durable LSN (VDL)

Log records can be lost, out of order

VDL.: the largest one with all prior LSNs are durable

Transaction Commits

transaction commits asynchronously
when a transaction commits, mark its commit LSN
commit only if VDL >= commit LSN

Replication: Scalability

1 writer and up to 15 reader instance

To keep data consistent between writer and readers
writer sends logs to readers at the same time
once the reader receives logs, it will check if the page is in the cache

replication lag: 20ms

Reads (Caching)

Each reader instance has a buffer (cache)

upon read, check cache first
the cache is supposed to contain the latest data pages
except replication lags
What if the cache is full?
always evict a clean page: a page that's durable (pageLSN <=VDL)
Why? O.w need to write dirty pages to storage, which increases network overhead

Crash Recovery

if writer (master) is crashed, detected by HM (health monitor), promote a reader to writer
first, and perform recovery

what if the failed writer comes back? -> contact HM

sometimes two master -> many unexpected issues



Crash Recovery

Traditional Databases Aurorg
* Have to replay logs since the last * No need to generate pages during
checkpoint recovery (very fast)

. . . * Just need to re-establish VDL =2 make
Typically 5 minutes between sure storage is consistent

checkpoints _
. , ) * Generate pages asynchronously, in
* Single-threaded in MySQL; requires a parallel
large number of disk accesses * DB engine undo partial fransactions

* Typically a few seconds

/”'“J//—\

\

_J Customer L
Ve Application \
( )
N Customer VPC ,/

Primary RW DB Secondary RO DB
Aurora Aurora
MySQL MySQL

Storage VPC \
~__ —
ra -
S3

Up to 5x faster than Cloud MySQL, but how about MySQL with local SSDs?



Comments on Aurora

* New way of building cloud DB systems
- Monolithic (since 1970s) = disaggregation
-Hardware & software

* Widely adopted in industry
- Microsoft Socrates DB
- Alibaba PolarDB

-Huawei TaurusDB



