
How to build your IT infrastructure?

Cloud Computing

Key Characteristics

Buy servers
how many? how much memory, disk, CPU, GPU?

how many users (particularly for special occasions)
Simple solution: provision for peak load, but underutilize in most times

Build a data center
where to physically put the servers?
what if the machines are crashed?

what if we need a software upgrade
cooling techniques
skilled engineers
Soln: All is possible without clod but at what cost?

cloud computing is about buying vs renting
instead of buying hardware, just renting an instance from a cloud provider (Amazon AWS,
Google Cloud)

Pay as you go
only pay for what you use with fine-grained metering, no up-front commitment (CPU
per hour, memory per GB)
Elasticity



Cloud Native Databases

Implications

users can release resources if not needed or request additional resources if
needed, ideally automatically (severless computing)

Virtualization
all the resources (cpu, memory, disk, network) are virtualized, no software is
bounded to hardware
resources are pooled to serve multiple users (multi-tenancy)

Automation
No human interaction (start/stop a machine, crash, backup)
everything is managed by cloud providers

Treat each cloud machine the same as in-house machine

run existing database systems directly
Cloud-native dbs are re-architectured to fully leverage the cloud infrastructure

resource/storage disaggregation

resource/storage pooling

DB software level needs to be aware of the underlying hardware-level resource
disaggregation

software level disaggregation
in order to enable more optimizations

Distributed database architecture needs to be changed
from shared nothing to shared storage



System Architecture

Main idea:

I/O traffic in traditional DB

I/O traffic in Aurora

Log is the database
only write redo logs on network
push log applicator to storage tier

Asynchronous processing
materialize pages in background

Buffer cache
to avoid network I/O
can rad pages upon cache miss

Only write redo log records



Writes

Transaction Commits

Replication: Scalability

Reads (Caching)

Crash Recovery

all steps asynchronous

4/6 quorum storage
7.7X less data movement

writes (trxns) send logs to storage asynchronously

durability: each log is durable (ack) with 4/6 quorums
Volume Durable LSN (VDL)

Log records can be lost, out of order

VDL: the largest one with all prior LSNs are durable

transaction commits asynchronously

when a transaction commits, mark its commit LSN
commit only if VDL >= commit LSN

1 writer and up to 15 reader instance

To keep data consistent between writer and readers
writer sends logs to readers at the same time
once the reader receives logs, it will check if the page is in the cache

replication lag: 20ms

Each reader instance has a buffer (cache)

upon read, check cache first
the cache is supposed to contain the latest data pages
except replication lags
What if the cache is full?

always evict a clean page: a page that's durable (pageLSN <= VDL)
Why? O.w need to write dirty pages to storage, which increases network overhead

if writer (master) is crashed, detected by HM (health monitor), promote a reader to writer
first, and perform recovery

what if the failed writer comes back? -> contact HM
sometimes two master -> many unexpected issues



Up to 5x faster than Cloud MySQL, but how about MySQL with local SSDs?




