
Linear regression:

Notation:
n = number of features
x^(i) = inpute features of ith training example
(x^(i))j = value of features j in ith training example
m = number of examples

Outline:

using a linear function to model the relationship between two variables by fitting a linear
equation to observed data.

choose the parameters we want to estimate so that the function/model we learn is close to y
on all the training examples
cost function (or loss function)

quantify the difference between the estimate value of model and true value

start with (random parameters)
keep changing parameter to reduce cost function until we end up at a minimum



Gradient descent Algorithm

Linear regression with one variable

Large Scale Machine Learning



Distributed ML

Distributed ML with Map-Reduce

If data is huge with billions or trillions of training examples, each iteration is very slow

Use many machines
Each machine processes a partition of data
Each machine computes the gradient on that machine

Finally, combine all the gradients

Map
workers do computation locally

map the training examples to temp

Reduce
compute the sum of all temp



ML in Spark

ML (spark.ml)

Data Types in MLlib

For each building block there are:

Dense vs Sparse Vectors

Server side
compute the derivatives

Broadcast parameters to all workers
continue the next iteration

all the advantages of Spark extend to machine learning
spark's distributed nature: leverage Spark's RDDs to scale to large-scale data
Spark's unifying nature: offer a platform for performing most tasks in man applications

can collect, prepare, and analyze the data (various types)
MLlib (spark, mllib)

based on Mlbase project in Berkeley

more mature
based on RDDs

new ml package, still developing

end-to-end pipeline
based on dataframe

Two building blocks
vectors, matrices

local version vs distributed version:
local: stored on a single node

distributed: based on RDD, stored on multiple nodes

Dense version vs sparse version
sparse: contains a lot of 0's
dense: not that many 0's

Underlying linear algebra operations are provided by Breeze and jblas

Dense vector
it can take all elements as inline arguments or
it can take an array of elements



Matrix

Distributed Matrix

Row Matrix:

LabeledPoint

Training and Validation Data

Sparse vector
Need to specify a vector size, an array with indices (of non-zero values), and an array
with values

a local matrix has integer-typed row and column indices and double-typed values, stored on
a single machine.

dense matrix: entry values are stored in a single double array in column major

sparse matrix: compressed sparse column format

Distributed matrices are necessary when you're using ml algorithms on huge datasets
they're stored across many machines, and they can have a large number of rows and
columns

Different forms
RowMatrix: used widely and we'll focus on it
IndexedRowMatrix

CoordinateMatrix
BlockMatrix

Stores each row as a vector object

LabeledPoint is another important data type
it's a specialized vector that includes label and a feature vector

split the data into training and validation sets



Predication

Model Evaluataion

training set is used to train the model and a validation set is used to see how well the model
performs on data that wasn't used to train it

the usual split ration is 80% for the training set and 20% for the validation set

you can now use the trained model to predict target values of vectors in the validation set by
running predict on every element
you can see how well the model is doing on the validation set by examining the contents of
validPredicts:

Some predictions are close to original labels, and some are further off. To quantify the
success of your model, calculate the root mean squared error (root of the cost function
defined previously)


