Graph
a collection of vertices and connected edges.
storage: adjacency list or adjacency matrix
directed and undirected graph
directed graph: the order of the two vertices in an edge matters
undirected graph: the order doesn't matter

Property Graph

it is a directed multigraph with user defined objects (or properties) attached to each vertex
and edge.
note: it's possible to have multiple edges between the same two vertices, because two
vertices may have different relationships, friends and coworkers, or multiple flights
between two vertices

Edge property Vertex Edge Vertex property
™ s I /
\ / ;/ /
\\, Relation: / / /
friend / J,f /
I / -
Name: Milhouse | | ' Name: Bart
Age: 12 Age: 12
Relation: | /N Relation:
father mother
Name: Homer | (. \ 5 N\ ____ Name: Marge
Age: 39 Age: 39
Relation:
married To

Graph Computation Model: BSP

BSP: Bulk Synchronous Processing

- a programming model and computation framework for parallel computing

- multiple computing processors, servers of cores

- computation is divided into sequences of supersteps

- each superstep, a set of processors, running the same code, executes concurrently and
creates messages that are sent to other processes.

- superstep ends when all the computation in the superstep is complete and all messages have
been sent

- a barrier synchronization at the end of the superstep
- the next superstep begins
- until the program terminates(reach mad num of iterations or converges)

Many graph algorithms are performed in different iterations (pagerank or shortest paths)
in a superstep (iteration):
every node will perform a compute() function based on the neighbor info received
(update some info for pagerank or shortest path)

the node will sent the new message to its neighbors

after every node finishes the compute(), the next superstep starts

Computing the max:

Superstep 0: initialization

i - Every node has its initial value
o e _ e o Superstep 0 - If'll send its current value to all the neighbors

L

L

: - Superstep 1

o Su - Every node will compare its current value with the values
uperstep 1 d X A
received from its neighbors
: - Node A receives 6 from its neighbor B and compares 4
ﬂ with its old value 3, and then changes to 6
o o o o Superstep 2 - If a node doesn't change the value (or status), it'll
; - become inactive and will not send new messages to
' neighbors

o e e o Superstep 3 . Supers’rep 2

- It a node doesn’t receive new messages, it'll become

inactive
Figure 2: Maximum Value Example. Dotted lines . . L. .
are messages. Shaded vertices have voted to halt. * The process continues until every node is inactive (or

reaches the max iterations)

Single Source Shortest Paths:

Finding shortest path between a single source vertex and every other vertex in the graph.

Each vertex stores a value denoting the distance from source vertex to this vertex

Value at each vertex is initialized to INF

In each superstep
receives messages from its neighbors with updated potential minimum distances from
source vertex
if minimum of these updated values is less than the current minimum distance of the
vertex, value is updated and potential updates are sent to the neighbors (current value
+ outgoing edge weight)

In first superstep, only source vertex will update its value to zero and send update

messages to its neighbors

algorithm terminates when no more updates

» Ais the source

INF INF

» Ais the source

+ Superstep = 2
° B=50C=3
> B sends messages
+ D=5+2=7

C sends messages
B=3+1=4
D=3+5=8

» Superstep =1 INF
s A=0
= A sends messages
- B=0+5=5
-+ C=0+3=3
« Ais the source 4 .)

« Superstep = 3 3
» B=4;D=7
« B sends messages
*D=g4+2=6

A is the source

Superstep = 4 3
« D=6

Since there will be no incoming messages in next step, the

algorithm will terminate

Values at vertices are the shortest distance from the source

Spark GraphX

GraphX is a graph processing system built inside Spark

It relies on RDDs as the building blocks and implements many graphs algorithms for large

scale data based on the BSP model
provides APls

graph construction
graph transformation
graph algorithms

Graph Construction:

Based on vertexRDD and EdgeRDDs

VertexRDDs: contain tuples, which consist of two elements; a vertex ID of type
Long and a property object of an arbitrary type

EdgeRDDs: contain edge objects, which consist of source and destination vertex ID (sourcelD
and destinationld) and a property object of an arbitrary type(attr, field)

You can create a Spark graph using VertexRDD and Edge RDD (there are other
construction methods)

Shortest Path Algorithm

Spark implements the shortest-path algorithm with the ShortestPaths object.

It has only one method, called run, which takes a graph and a sequence of landmark vertex
IDs

The returned graph's vertices contain a map with the shortest path to each of the

landmarks, where the landmark vertex ID is the key and the shortest-path length is the
value.

