
Limitations of Hadoop MapReduce

An iterative query includes multiple mr jobs

SPARK

Spark components

good for one-shot queries when analyzing data (word count, table join, log search) convert
to one MR job

inefficient for iterative queries
must have multiple map reduce
shows up in many ml task (gradient descent)

applications that reuse intermediate results across multiple computations

output of the 1st mr job is the output of the 2nd mr job .....
Each phase outputs intermediate results in HDFS(on disk), very slow

improved over hadoop
in memory computing, whenever possible store everything (including intermediate results)
in memory instead of disk
much faster, up to 10 times faster on some iterative workloads, (we care about performance
in big data systems)

has more function, more than simple mr jobs, easier for big data analytics
written in Scala but can use Java or Python

core

sql
graph

streaming
ml



SPARK CORE

to keep track of different computation stages, spark defines a new concept called Resilient
Distributed Datasets (RDD)

RDD abstracts the data (or objects) transmitted among different computation stages
RDD is the basic unit of computation and transformation

RDD is read-only (immutable), partitioned collection of records (think of it like an array or a
list but it is a collection of items , a set??)
RDD can be created from:

data in memory or on storage (base RDD)

other RDDs (transformed RDD)
CREATE RDD



RDD OPERATIONS

All RDDs of a task can form a graph, called lineage graph
one RDD can be derived from one or more RDDs

overall data flow is a graph

Fault tolerant: can be reconstructed on failure using lineage graph or checkpointed
no need for replication

RDDs are stored in memory can also persist on disk
when possible RDDs are stored in memory for fast performance

can be reused for multiple computations efficiently (without disk access)
can also persist on disk when necessary (insufficient memory)
Text Search example

Load error messages from a log into memory, then interactively search for various patterns.



RDDs provide more functionalities than Hadoop MR
RDD operations are coarse-grained, applied to all items on RDD

Transformation RDD

Transformation: transform one RDD to another one

Action: take some actions on a particular RDD, like count(),...





ACTION RDDS

action RDD performs actual computation on the input RDD



SPARK DAG (directed acyclic graph)
workflow is represented as a DAG

DAG tracks dependencies (lineage)
nodes are RDDs



SPARK DEPENDENCY

SPARK EXECUTION

arrows are transformations

Lazy evaluation
data in RDDs is not processed until an action is performed
do actual evaluation only when we see action RDDs (only in collect() will trigger actual
evolution & computation)



FAULT TOLERANCE

if a server executing RDD is crashed, we simply reconstruct the RDD from the lineage
graph

For fast recovery, you can persist some intermediate RDDs so that you don't have to rebuild
from beginning (checkpointing)


