Limitations of Hadoop MapReduce

good for one-shot queries when analyzing data (word count, table join, log search) convert
to one MR job

inefficient for iterative queries
must have multiple map reduce
shows up in many ml task (gradient descent)

applications that reuse intermediate results across multiple computations

Map »l Reduce » Map »| Reduce >

HDFS HDFS HDFS HDFS$

An jterative query includes multiple mr jobs

output of the 1st mr job is the output of the 2nd mr job
Each phase outputs intermediate results in HDFS(on disk), very slow

SPARK

improved over hadoop

in memory computing, whenever possible store everything (including intermediate results)
in memory instead of disk

much faster, up to 10 times faster on some iterative workloads, (we care about performance
in big data systems)

has more function, more than simple mr jobs, easier for big data analytics

written in Scala but can use Java or Python

Spark components

core
sql

graph
streaming
mi

Streaming sources include Spark Streaming can use Spark Streaming can use
Kafka, Flume, Twitter, HDFS, GraphX features on the machine-learning models and
and ZeroMQ. data it receives. Spark SQL to analyze streaming data.

N

Streaming sources

Spark Streaming / } Spark ML & MLIib

Spark MLIib models

- > use DataFrames to
represent data.
DStream / sl Spark ML uses RDDs.
e Both use features

T from Spark Core.

=

1
Spark GraphX Spark Core Spark SQL

\ Data sources include
Graph RDD RDD Dataframe Hive, JSON, relational
\ databases, NoSQL
databases, and
/ / Parquet files.

Spark Streaming

use? D‘Straams to Filesystems Data sources

periodically

create RDDs. / l\

/

Spark GraphX uses Spark Filesystems include HDFS, Spark ?QL transforms

Core features behind Guster FS, and Amazon $3. operations on DataFrames

the scenes. to operations on RDDs.
SPARK CORE

to keep track of different computation stages, spark defines a new concept called Resilient
Distributed Datasets (RDD)
RDD abstracts the data (or objects) transmitted among different computation stages
RDD is the basic unit of computation and transformation
RDD is read-only (immutable), partitioned collection of records (think of it like an array or a
list but it is a collection of items , a set??)
RDD can be created from:
data in memory or on storage (base RDD)

other RDDs (transformed RDD)
CREATE RDD

SparkContext sc: Spark environment that stores the configuration
solution 1: from HDFS

textFile is a build-in method for parsing various types of data files

val rdd1 = s¢.iexiFile("hdfs:/ffile-path")

solution 2: from a local file

solution 3: convert an in-memory array to an RDD (with 3 partitions)

by default, it's the num of cores in your server

printin(rdd3.getNumPartitions)
solution 4: from another RDD

val rdd4=rdd3.map(x=>x+10)

All RDDs of a task can form a graph, called lineage graph
one RDD can be derived from one or more RDDs
overall data flow is a graph

Fault tolerant: can be reconstructed on failure using lineage graph or checkpointed
no need for replication

RDDs are stored in memory can also persist on disk
when possible RDDs are stored in memory for fast performance

can be reused for multiple computations efficiently (without disk access)

can also persist on disk when necessary (insufficient memory)
Text Search example

Load error messages from a log into memory, then interactively search for various patterns.

lines = spark.textFile(“hdfs://...”) -

errors = lines.filter(x => x.startsWith(“ERROR")) —

messages = errors.map(y => y.split(\t’)(2))
messages.persisi()

messages.filter(_.contains(“PHP")).count -

messages.filter(_.contains(“SQL")).count

RDD OPERATIONS

Transformation: transform one RDD to another one

Action: take some actions on a particular RDD, like count(),...

RDDs provide more functionalities than Hadoop MR
RDD operations are coarse-grained, applied to all items on RDD

Transformation RDD
* map(f: T=>U)
- RDD[T] & RDDI[U]

- Convert an old RDD to a new RDD by applying the function f to
each itemin the old RDD

data =[1,2,3,4,5]

* flatMap (f: T=2seq[U])
- RDDI[T] = RDD[U]
= Similar to map(), but it’ll flatten the output
data = [2,3,4]

range(1,x) will print out values from 1..x-1
output: [[1], [1, 2], [1, 2, 3]]

iDUE ‘e

* filter(f: T=> Bool)
- RDD[T] = RDDI[T]

- Convert an old RDD to a new RDD by applying the function f to
each item in the old RDD and only showing the qualified items
- You can think f as a filter

data =[1,2,3,4,5]

‘reduceByKey(f: (V.V) 2> V)
-RDDJ[(K,V)] 2 RDDJ[(K,V)]

—You can also define a function for more complicated
computations

*join()
~ (RDD[(K, V)].RDD[(K, W)]) => RDD[(K, (V. W)]]
— It merges two RDDs based on the same key

* Uunion()
-1t merges two RDDs (keeps duplicates if any)

: RDD[T] = RDD[U]
: RDD[T] = RDD[T]

[

filter(f : T = Bool [
: RDD[T] = RDDI[U]

[

[

flatMap(f : T = Seq[U]
sample(fraction : Float
groupByKey(
reduceByKey(f : (V,V) = V) : RDD[(K, V)] = RDD[(K, V)]

)

)

)

) : RDD|T] = RDD|T] (Deterministic sampling)

]
Transformations union() : (RDD[T],RDDI[T]) = RDD[T]

) .

)

)

)

)

)

: RDDI[(K, V)] = RDD[(K, Seq[V])]

join((RDD[(K, V)], RDD[(K, W)]) == RDD[(K, (V, W))]
cogroup((RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W]))]
crossProduct(
mapValues(f : V=W
sort(c : Comparator[K]
partitionBy(p : Partitioner[K]

: (RDDI[T],RDD[U]) = RDD[(T, U)]

: RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
: RDD[(K, V)] = RDDI[(K, V)]

: RDD[(K, V)] = RDDI[(K, V)]

ACTION RDDS

action RDD performs actual computation on the input RDD
—Count(): RDD[T] => Long
- Collect(): RDD[T] => Seq|[T]
-Reduce(): RDD[T] =>T
-Save(): Outputs RDD to a storage system, e.g., HDFS

- Count()

- Return the num of items in an RDD

* Collect()
- Return the items in an RDD

* Reduce(f: (TT) =>1T)
-RDD[T] =T
- Reduce the items of the input RDD using the function specified

- Use the function to compute the first two items and produce a
new item. Then use the function to compute the new item and
the 3@ item and produce another new item...

SPARK DAG (directed acyclic graph)
workflow is represented as a DAG

DAG tracks dependencies (lineage)
nodes are RDDs

» arrows are transformations

SPARK DEPENDENCY

* Narrow dependency: Parent partition is used by

only one child partition
- Examples: map, filter

~\

—
—

-
—

S

—

* Wide dependency: Parent partition is used by

many child partitions
—-Example: reduceBy

SPARK EXECUTION

« Lazy evaluation

« data in RDDs is not processed until an action is performed

« do actual evaluation only when we see action RDDs (only in collect() will trigger actual

evolution & computation)

lines.flatMap(line => line.split(* "))

r map(word => (word, 1))
reduceByKey((x.y) =>x +v)

FAULT TOLERANCE

if a server executing RDD is crashed, we simply reconstruct the RDD from the lineage
graph

For fast recovery, you can persist some intermediate RDDs so that you don't have to rebuild
from beginning (checkpointing)

