Place chunks on servers with below-average disk space utilization because our goal is to
equalize disk utilization

place chunks on servers with low number of recent creations, prevents heavy write traffic in
near future

spread chunks across racks

GARBAGE COLLECTION

GFS does not immediately reclaim physical storage after a file is deleted

"Lazy" garbage collection mechanism
master logs are changed to a "hidden file name"
master removes hidden files during regular file system scan (3 day window to
undelete)

HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

Open source clone of GFS
similar assumptions, design, architecture
Differences
no support for random writes, append only
platform independence (implemented in java)

Terminology

HDFS -> GFS
namenode -> master
datanode -> chunkserver
block -> chunk

edit log -> operation log

HDFS Architecture
Metadata (Name, replicas, ...):

Metadata ops .-[Namenode /homeffoo/data, 3, ...

Block ops
Read Datanodes \ Datanodes
!] |
E = - - Replication = 8 =
[L] Blocks

\ /

Rack 2

Bigtable: a distributed storage system for structured data
(HBase is an open-sourced Bigtable)

Issues with HDFS

inefficient for random accesses (optimized for large-file sequential accesses)
inefficient fro writers (optimized for read)

inefficient for supporting structured/semi-structured data, in particular big tables (AKA
sparse tables)

Usually when tables have lot of columns there are several empty entries.

Traditional DBs must store empty entries, which is a waste of space.

Sparse table is a semi-structured data model where tuples do not exactly follow a fixed schema
Formally, a Bigtable is a sparse, distributed, persistent, multidimensional sorted map

The map is indexed by a row and column key, and a timestamp.
Each value in the map is an uninterpreted array of bytes.

UserlD Name Age City JobTitle Company Salary Address

1 testl SDE S1 Al
2 20 Sales C2

& Chicago C3 S3 A3
4 test4 New York Consultant S4

5 tests 25 A5

* We can use key-value store to represent this table:
- (Row ID + Column Name = Value) (LLname, tfest1)

- Key is a compound key (1,JobTitle, SDE)
- This can reduce space

(only store non-empty cells) (]‘50'0% S1)

J \ J
\

JUE key value

For new updates we do not update immediately (lazy update)
must append a new tuple of the same key but with a different timestamp for every cell.

every cell is a collection of pairs with (value, timestamp)
represents the value at that time
{(SDE,0),(Senior SDE, 1)}

Support timestamp in the key-value model:

- (Row ID + Column Name + Timestamp = Value)
- This can support updates efficiently

(l.name.0, testl)
(1,JobTitle,0, SDE)
(1,JobTitle, 1, Senior SDE)
(1.Salary,0, S1)

\ J \ J
¥ Y

key value

Bigtable organizes the columns into column families
Easier to manage because there are many columns

every column is referenced by family

Personalinfo Jobinfo

UseriD Name Age City Jobritle Company Salary Address
1 testl SDE S1 Al

2 20 Sales &2

3 Chicago C3 S3 A3

4 test4 New York Consultant S4

5 testd 25 A5

Naturally we need to include column families in the key value and thus:

- (Row ID + Family:Column Name + Timestamp = Value)

(1,Personalinfo:name,0, testl)
(1,Personallnfo:JobTitle,0, SDE)
(1,Personalinfo:JobTitle,1, Senior SDE)
(1,Personalinfo:Salary,0, ST)

\ J \]
Y \{

key valuve

HBASE STORAGE

on top of HDFS
HBase tables are divided horizontally by row key range into regions

regions are the basic building elements of HBase cluster that consists of the distribution of
tables and are comprised of column families

region server run on HDFS datanode which is present in hadoop cluster

storage inside each region is based on log-structured merge tree

l" HBase
EEIVICISIC [T

f (Region (Region [Region
server server server

\f Region Region Region
Region) \ Region Y, Region Y,

§ § 1

HDFS

LOG STRUCTURED MERGE TREE (LSM)

used widely in modern DBs systems

more than a data structure or storage engine, it is a design principle (okay)

B-tree insertion incurs many random writes -> LSM converts random writes to sequential
writes

B tree insertion incurs high costs due to in place update -> LSM uses out of place update
Any static or hard to update structure (vector index) can use LSM

Basic idea of LSM

if you have existing structure like index table, and new updates come in
do not update existing structure directly

instead store new updates in separate structure

merge the two structures later on

this is know as out of place update

it is an immutable index (while B tree is mutable index)

it has two parts, main memory component (mutable), disk component (immutable)

Cq tree Cp tree
|] |
| | |
Disk Memory

Initially CO and C1 are empty

when data comes go to CO

when CO's size exceed a threshold, flush to disk becoming C1
new data comes again go to CO

when CO's size exceed a threshold merge with C1

no random writes to the disk tree C1

only sequential accesses to C1 with a big chunk
background compaction

improve performance for write intensive workloads

LSM can contain multiple levels

advantage of LSM: no random writes, no in place update

