
GARBAGE COLLECTION

HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

Terminology

Place chunks on servers with below-average disk space utilization because our goal is to
equalize disk utilization

place chunks on servers with low number of recent creations, prevents heavy write traffic in
near future
spread chunks across racks

GFS does not immediately reclaim physical storage after a file is deleted

"Lazy" garbage collection mechanism
master logs are changed to a "hidden file name"
master removes hidden files during regular file system scan (3 day window to
undelete)

Open source clone of GFS
similar assumptions, design, architecture
Differences

no support for random writes, append only
platform independence (implemented in java)

HDFS -> GFS

namenode -> master
datanode -> chunkserver
block -> chunk



Bigtable: a distributed storage system for structured data
(HBase is an open-sourced Bigtable)

Issues with HDFS

Usually when tables have lot of columns there are several empty entries.

Traditional DBs must store empty entries, which is a waste of space.

Sparse table is a semi-structured data model where tuples do not exactly follow a fixed schema

Formally, a Bigtable is a sparse, distributed, persistent, multidimensional sorted map

The map is indexed by a row and column key, and a timestamp.
Each value in the map is an uninterpreted array of bytes.

edit log -> operation log

inefficient for random accesses (optimized for large-file sequential accesses)
inefficient fro writers (optimized for read)
inefficient for supporting structured/semi-structured data, in particular big tables (AKA
sparse tables)



For new updates we do not update immediately (lazy update)
must append a new tuple of the same key but with a different timestamp for every cell.

Support timestamp in the key-value model:

every cell is a collection of pairs with (value, timestamp)

represents the value at that time
{(SDE,0),(Senior SDE, 1)}

Bigtable organizes the columns into column families
Easier to manage because there are many columns

every column is referenced by family



Naturally we need to include column families in the key value and thus:

HBASE STORAGE

on top of HDFS

HBase tables are divided horizontally by row key range into regions
regions are the basic building elements of HBase cluster that consists of the distribution of
tables and are comprised of column families
region server run on HDFS datanode which is present in hadoop cluster



LOG STRUCTURED MERGE TREE (LSM)

Basic idea of LSM

storage inside each region is based on log-structured merge tree

used widely in modern DBs systems
more than a data structure or storage engine, it is a design principle (okay)
B-tree insertion incurs many random writes -> LSM converts random writes to sequential
writes

B tree insertion incurs high costs due to in place update -> LSM uses out of place update
Any static or hard to update structure (vector index) can use LSM

if you have existing structure like index table, and new updates come in
do not update existing structure directly

instead store new updates in separate structure
merge the two structures later on

this is know as out of place update
it is an immutable index (while B tree is mutable index)



it has two parts, main memory component (mutable), disk component (immutable)

Initially C0 and C1 are empty
when data comes go to C0
when C0's size exceed a threshold, flush to disk becoming C1

new data comes again go to C0
when C0's size exceed a threshold merge with C1
no random writes to the disk tree C1

only sequential accesses to C1 with a big chunk
background compaction

improve performance for write intensive workloads
LSM can contain multiple levels
advantage of LSM: no random writes, no in place update


