
Divide
Sharding split documents into different servers

Qtr Each server process a som

combine merge all solus

FI in main memory

How to split

server crash re do all work

MapReduce

map function line counting
words

reduce function
combining local into

a global

MapReduce invented by
Google

simplified programming
framework for big data analytics

users must only specify
the computing logic

maph reduced framework
handles the rest

Deff MapReduce in a data parallel programming framework

ormodel for clusters of commodity machines

Goals scalability of Large volumes cost efficiency

Map Transform input data into
some intermediate

local results wordCount

Reduce Aggregate or combine the local results
into

global results

Parameters must be
flexible and powerful

MapReduce uses lift nerves as its main

data primitives

Map ki v List K2 v2

Reduce Re list v2 Us Us

Input has to be a list of key value pair

list of documents can be multiple pairs formany
docs

2 does Hello world

Input list of key value pairs
is partitioned into

different servers and each keyvalue
cal v S is processed

by calling themap function
convert to list Luz V27

i e Hello 17 word 13

All pairs that share the same key
will be grouped together

Hello 17 Hello 1 Hello list 11
R2 fist ra

singles
world list 1

Reduce function converts each Lnz list v2 ks V37

Hello list 1,177 Hello 27
world 17 243 V37

In general

Map Extract something you
care about from

each record

Ed aggregate
summarize filter or transform

Architecture

MR good for large scale data

hard to write efficient code

MR mindset Every
task has to be

represented using

map and reduce

Sl Expose Sql
interface and hide MR programming

SQL Queries Hire
Hadoop

Hive SQL DB on top of Hadoop

users onlywrite SQL queries
automatically converted

to mapreduce

Hireterminology

DBs contains tables
views partitions

Each table has corresponding directory
in HDFS

Tables Data Records tuples w same schema

PrimTypes TingInt 1byte SMALLINT 2 bytes INT 4 byte
BigInt 8bytes

Lphytype map key type
value type

List element type
strut file name field type

Hiveoverycanguage

HQL SQL some extensions

Support basic SQL statements

select project join groupby aggregation create
table

Hive Join Only support equality join

Hive cannot insert data is designed for data analytics

Data is generated from outside of Hive

Prof better concurrency
control

cons hard foroptimize cannot
ensure best storage layout

In DB's theyfigure out the best storage layout
for fast

Query

HiveArchitecture

testor component that store thesystem catalog and
meta data about tables cols parts
stored on RDBMS

Liver component that manages the
lifecycle of a HiveSQL

statement as it moves through the hive

Also maintains a session handle and any
session

statistics

Queytompilev.sncomponent that compiles the SQL into a

directed acyclic graph of map
reduce tasks

Optimizes chain of transformations such that the operat
DAT resulting from one trans is passed as

input to the next trans

Col pruning part pruning
repartitioning of data

Execution
component that executes the tasks

Engine produced by the compiler in proper dependency

order The execution engine interacts
w the

underlying Hadoop instance

Thriftserver component that provides a thrift interface
and a JDBC ODBC server and provides
a way of integratingHive

with other

apps

Lentomponents commandLine Interface
CLI

web UI JDBC OBDC driver

Farethat
let programs talk
to the DB

Hadoop Distributed File system HDFS

storage for Hadoop MR

server failures huge files
append only

workload

Apps

web crawls find all pages that link togiven page

spam pages for training

É n E És ftp.t5 ceateacopyot
create delete

a file or a directory tree at a
open close lowcost by copyand

write

readwrite
record append append

data to

the end of the file

FIsingleTTaster and multiple chunkservers

accessed by multiple
clients

different from users applications

users access clients to perform file system operation

I servÉ at interacts w user apps

provide readwrite APIs

access file go through
GFS client

Interact with GFS master forMetadata and then access

chunk servers toget actualdata doesnot cachedata

GISstoreh.TT
metadata and control the entire GFS cluster

only 1 master server in the cluster

monitoring periodic
heartbeat messages to each chunk

server

Clients communicate
with master for

metadata

data request go to chunkservers

Perform garbage collection
orphaned chunks chunk migration

Ensiform
files divided into fixed size

chunces

identified by unique chunk
handle assignedby

Master

Readwrite based on handle and byte range

Chunks replicated for reliability common factor is 31

Chunnsize

parameter set to a large value 64MB

Chunks stored as plain Linux files

Pros
reduce interaction between clientmaster

reduce network overhead by using
TCP connection to do

many operations
in one chunk

reduce size of metadata on master

Cons
small files consist of one or a few

chunks slow read

risk of hotspots
popular executable file

soln increase replication factor for
small files to

distribute the load to more servers

Fileread
Read example

GFS client translates file I byte offset
chunn index
fixedchunce size

GFS master responds
w chunk handle locations

GFS client sends
read requests to chunkservers

closest

Must separate data
flow vs control flow

best utilize network
bandwith

Ow master bottleneck it
all data access

through TFS master

Faulttolerance

Goalsforchneplacementpolicy
max data reliability and

availability

Max network
bandwith utilization

GARBAGE COLLECTION

HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

Terminology

Place chunks on servers with below-average disk space utilization because our goal is to
equalize disk utilization

place chunks on servers with low number of recent creations, prevents heavy write traffic in
near future
spread chunks across racks

GFS does not immediately reclaim physical storage after a file is deleted

"Lazy" garbage collection mechanism
master logs are changed to a "hidden file name"
master removes hidden files during regular file system scan (3 day window to
undelete)

Open source clone of GFS
similar assumptions, design, architecture
Differences

no support for random writes, append only
platform independence (implemented in java)

HDFS -> GFS

namenode -> master
datanode -> chunkserver
block -> chunk

Bigtable: a distributed storage system for structured data
(HBase is an open-sourced Bigtable)

Issues with HDFS

Usually when tables have lot of columns there are several empty entries.

Traditional DBs must store empty entries, which is a waste of space.

Sparse table is a semi-structured data model where tuples do not exactly follow a fixed schema

Formally, a Bigtable is a sparse, distributed, persistent, multidimensional sorted map

The map is indexed by a row and column key, and a timestamp.
Each value in the map is an uninterpreted array of bytes.

edit log -> operation log

inefficient for random accesses (optimized for large-file sequential accesses)
inefficient fro writers (optimized for read)
inefficient for supporting structured/semi-structured data, in particular big tables (AKA
sparse tables)

For new updates we do not update immediately (lazy update)
must append a new tuple of the same key but with a different timestamp for every cell.

Support timestamp in the key-value model:

every cell is a collection of pairs with (value, timestamp)

represents the value at that time
{(SDE,0),(Senior SDE, 1)}

Bigtable organizes the columns into column families
Easier to manage because there are many columns

every column is referenced by family

Naturally we need to include column families in the key value and thus:

HBASE STORAGE

on top of HDFS

HBase tables are divided horizontally by row key range into regions
regions are the basic building elements of HBase cluster that consists of the distribution of
tables and are comprised of column families
region server run on HDFS datanode which is present in hadoop cluster

LOG STRUCTURED MERGE TREE (LSM)

Basic idea of LSM

storage inside each region is based on log-structured merge tree

used widely in modern DBs systems
more than a data structure or storage engine, it is a design principle (okay)
B-tree insertion incurs many random writes -> LSM converts random writes to sequential
writes

B tree insertion incurs high costs due to in place update -> LSM uses out of place update
Any static or hard to update structure (vector index) can use LSM

if you have existing structure like index table, and new updates come in
do not update existing structure directly

instead store new updates in separate structure
merge the two structures later on

this is know as out of place update
it is an immutable index (while B tree is mutable index)

it has two parts, main memory component (mutable), disk component (immutable)

Initially C0 and C1 are empty
when data comes go to C0
when C0's size exceed a threshold, flush to disk becoming C1

new data comes again go to C0
when C0's size exceed a threshold merge with C1
no random writes to the disk tree C1

only sequential accesses to C1 with a big chunk
background compaction

improve performance for write intensive workloads
LSM can contain multiple levels
advantage of LSM: no random writes, no in place update

Limitations of Hadoop MapReduce

An iterative query includes multiple mr jobs

SPARK

Spark components

good for one-shot queries when analyzing data (word count, table join, log search) convert
to one MR job

inefficient for iterative queries
must have multiple map reduce
shows up in many ml task (gradient descent)

applications that reuse intermediate results across multiple computations

output of the 1st mr job is the output of the 2nd mr job
Each phase outputs intermediate results in HDFS(on disk), very slow

improved over hadoop
in memory computing, whenever possible store everything (including intermediate results)
in memory instead of disk
much faster, up to 10 times faster on some iterative workloads, (we care about performance
in big data systems)

has more function, more than simple mr jobs, easier for big data analytics
written in Scala but can use Java or Python

core

sql
graph

streaming
ml

SPARK CORE

to keep track of different computation stages, spark defines a new concept called Resilient
Distributed Datasets (RDD)

RDD abstracts the data (or objects) transmitted among different computation stages
RDD is the basic unit of computation and transformation

RDD is read-only (immutable), partitioned collection of records (think of it like an array or a
list but it is a collection of items , a set??)
RDD can be created from:

data in memory or on storage (base RDD)

other RDDs (transformed RDD)
CREATE RDD

RDD OPERATIONS

All RDDs of a task can form a graph, called lineage graph
one RDD can be derived from one or more RDDs

overall data flow is a graph

Fault tolerant: can be reconstructed on failure using lineage graph or checkpointed
no need for replication

RDDs are stored in memory can also persist on disk
when possible RDDs are stored in memory for fast performance

can be reused for multiple computations efficiently (without disk access)
can also persist on disk when necessary (insufficient memory)
Text Search example

Load error messages from a log into memory, then interactively search for various patterns.

RDDs provide more functionalities than Hadoop MR
RDD operations are coarse-grained, applied to all items on RDD

Transformation RDD

Transformation: transform one RDD to another one

Action: take some actions on a particular RDD, like count(),...

ACTION RDDS

action RDD performs actual computation on the input RDD

SPARK DAG (directed acyclic graph)
workflow is represented as a DAG

DAG tracks dependencies (lineage)
nodes are RDDs

SPARK DEPENDENCY

SPARK EXECUTION

arrows are transformations

Lazy evaluation
data in RDDs is not processed until an action is performed
do actual evaluation only when we see action RDDs (only in collect() will trigger actual
evolution & computation)

FAULT TOLERANCE

if a server executing RDD is crashed, we simply reconstruct the RDD from the lineage
graph

For fast recovery, you can persist some intermediate RDDs so that you don't have to rebuild
from beginning (checkpointing)

GOALS:

SPARK SQL ARCHITECTURE

DataFrame:

Types of interfaces:

SparkSQL is used to query data on spark easily

especially for structured data with schemas
No need for tedious spark RDDs
simple SQL queries automatically translated to spark RDDs

support relational processing both within spark programs and external data sources using
friendly API
high performance using established DBMS techniques
support new data sources, including semi-structured data and external databases amenable
to query federation

enable graph processing (advanced analytics) and external databases
enable the use of advanced analytics algorithms, like graph processing and ml

new concept to abstract RDDs for structured data (like a table)

DataFrame API
SQL over DataFrame

DataFrame is designed for handling structured, distributed data in a table-like representation
with named columns and declared column types. It is a higher-level abstraction than RDD.

We can create DFs from a csv, json

We can print out the dataframe dfs.printSchema() note nullable means the column can be
null.

Can also create data frame from RDD with/without schema

Two approaches for query DataFrame:

Operations:

has schema(types), allows more meaningful operations/queries over columns and rows.

For RDD we only know that there is a collection of items (not knowing data type of each
fiels)

Schema will be automatically inferred
Can specify options("inferSchema","true")

DataFrame operations
SQL queries over DataFrame

select one or more columns

limit(k) to print out first k results
filter to add some condition like age > 23

GroupBy and use max(),min(),avg()
sort(), orderby(), (by default we have ascending order)

SQL Queries over DataFrame

join two dataframes based on common attributes

DFs can be registered as temporary tables in the system catalog and queried using SQL

Data Streaming

Applications

STREAM vs BATCH

Batch processing:

Stream processing:

Many applications must process large streams of live data and provide results in near real
time.

IoT data with sensors

Social Network trends
website statistics

monitoring

We do not know the entire data set in advance
Data is generated and ingested continuously

Think of data as infinite and non-stationary(the distribution changes over time)

Mining query streams (which queries are more frequent today than yesterdays)

Mining click streams (which of its pages are getting unusual number of hits in the past hour)
Mining social network new feeds (look for trending topics)
IP packets monitored at a switch (information for optimal routing, detect denial of service
attacks)

see the entire data in advance
able to store all data

don't see the entire data in advance

can't store all the data

Example streaming K-largest elements:

Constraints:

Main idea:

Spark streaming

Suppose we have a stream (infinite) of integers, how do we find the largest k integers so
far?

cannot store all the elements
can only look once
use O(k) space

use a min heap of size k
top element is the smallest and it represents the kth largest element seen so far
the heap stores the answer

scan every element in the stream
if its smaller than the top, we discard it

otherwise
push e to the heap, will automatically do heap adjustment
delete the top, bingo! heap is updated

time complexity is

spark is a batch processing system

main idea: discretized stream
run a streaming computation as a series of very small stateless deterministic batch
jobs
chop the incoming data into intervals of X seconds (1 second)

run spark within each interval -> batch processing within each interval (using spark
RDD)
final result: can be returned across different intervals

Spark streaming divides input data streams into batches and stores them in Spark's
memory

DStream (discretized streams)

Streaming Word Count:

It then executes a streaming application by generating Spark jobs to process the batches

Sequence of RDDs representing a stream of data

DStream is a sequence of immutable, partitioned datasets (RDDs) that can be acted on by
deterministic transformations.
These transformations yield new D-Streams and might create an intermediate state in the
form of RDDs
Note there are stateless RDDs (default) and stateful RDDs

DStream Operations

Window Operations:

Stateless transformation
Only show the results within current time interval

word count of the current interval
API's that we've learned in spark core: map(), flatMap(), filter(), etc

Stateful transformation
also consider the results of prior intervals
word count of the words received so far

word count in the last 10 seconds
Stateful Operations:

update StateByKey()
compute the result based on all the history data received so far

need to specify an update function of how to change the status

window operation
compute the results in a specified moving window (last 10 seconds)

compute the result of the last time window
window length: multiple units of a time interval

if the time interval is 3 seconds, then window size can be 3sec,6sec,9sec, etc

sliding interval: time to trigger computation: multiple units of a time interval:

reduceByKeyAndWindow():

specify when to compute the results

it's set to be 3 seconds, then it'll show the results at the end of each time interval

computes the result in the current window instead of the current interval

Property Graph

BSP: Bulk Synchronous Processing
- a programming model and computation framework for parallel computing
- multiple computing processors, servers of cores
- computation is divided into sequences of supersteps
- each superstep, a set of processors, running the same code, executes concurrently and
creates messages that are sent to other processes.
- superstep ends when all the computation in the superstep is complete and all messages have
been sent

Graph
a collection of vertices and connected edges.

storage: adjacency list or adjacency matrix
directed and undirected graph

directed graph: the order of the two vertices in an edge matters

undirected graph: the order doesn't matter

it is a directed multigraph with user defined objects (or properties) attached to each vertex
and edge.

note: it's possible to have multiple edges between the same two vertices, because two
vertices may have different relationships, friends and coworkers, or multiple flights
between two vertices

Graph Computation Model: BSP

- a barrier synchronization at the end of the superstep
- the next superstep begins
- until the program terminates(reach mad num of iterations or converges)

Computing the max:

Single Source Shortest Paths:

Many graph algorithms are performed in different iterations (pagerank or shortest paths)

in a superstep (iteration):
every node will perform a compute() function based on the neighbor info received
(update some info for pagerank or shortest path)
the node will sent the new message to its neighbors

after every node finishes the compute(), the next superstep starts

Finding shortest path between a single source vertex and every other vertex in the graph.

Each vertex stores a value denoting the distance from source vertex to this vertex
Value at each vertex is initialized to INF
In each superstep

receives messages from its neighbors with updated potential minimum distances from
source vertex
if minimum of these updated values is less than the current minimum distance of the
vertex, value is updated and potential updates are sent to the neighbors (current value
+ outgoing edge weight)

In first superstep, only source vertex will update its value to zero and send update
messages to its neighbors
algorithm terminates when no more updates

Spark GraphX

provides APIs

Graph Construction:

GraphX is a graph processing system built inside Spark

It relies on RDDs as the building blocks and implements many graphs algorithms for large
scale data based on the BSP model

graph construction
graph transformation

graph algorithms

Based on vertexRDD and EdgeRDDs

VertexRDDs: contain tuples, which consist of two elements; a vertex ID of type
Long and a property object of an arbitrary type

EdgeRDDs: contain edge objects, which consist of source and destination vertex ID (sourceID
and destinationld) and a property object of an arbitrary type(attr, field)

Shortest Path Algorithm

You can create a Spark graph using VertexRDD and Edge RDD (there are other
construction methods)

Spark implements the shortest-path algorithm with the ShortestPaths object.
It has only one method, called run, which takes a graph and a sequence of landmark vertex
IDs
The returned graph's vertices contain a map with the shortest path to each of the
landmarks, where the landmark vertex ID is the key and the shortest-path length is the
value.

Linear regression:

Notation:
n = number of features
x^(i) = inpute features of ith training example
(x^(i))j = value of features j in ith training example
m = number of examples

Outline:

using a linear function to model the relationship between two variables by fitting a linear
equation to observed data.

choose the parameters we want to estimate so that the function/model we learn is close to y
on all the training examples
cost function (or loss function)

quantify the difference between the estimate value of model and true value

start with (random parameters)
keep changing parameter to reduce cost function until we end up at a minimum

Gradient descent Algorithm

Linear regression with one variable

Large Scale Machine Learning

Distributed ML

Distributed ML with Map-Reduce

If data is huge with billions or trillions of training examples, each iteration is very slow

Use many machines
Each machine processes a partition of data
Each machine computes the gradient on that machine

Finally, combine all the gradients

Map
workers do computation locally

map the training examples to temp

Reduce
compute the sum of all temp

ML in Spark

ML (spark.ml)

Data Types in MLlib

For each building block there are:

Dense vs Sparse Vectors

Server side
compute the derivatives

Broadcast parameters to all workers
continue the next iteration

all the advantages of Spark extend to machine learning
spark's distributed nature: leverage Spark's RDDs to scale to large-scale data
Spark's unifying nature: offer a platform for performing most tasks in man applications

can collect, prepare, and analyze the data (various types)
MLlib (spark, mllib)

based on Mlbase project in Berkeley

more mature
based on RDDs

new ml package, still developing

end-to-end pipeline
based on dataframe

Two building blocks
vectors, matrices

local version vs distributed version:
local: stored on a single node

distributed: based on RDD, stored on multiple nodes

Dense version vs sparse version
sparse: contains a lot of 0's
dense: not that many 0's

Underlying linear algebra operations are provided by Breeze and jblas

Dense vector
it can take all elements as inline arguments or
it can take an array of elements

Matrix

Distributed Matrix

Row Matrix:

LabeledPoint

Training and Validation Data

Sparse vector
Need to specify a vector size, an array with indices (of non-zero values), and an array
with values

a local matrix has integer-typed row and column indices and double-typed values, stored on
a single machine.

dense matrix: entry values are stored in a single double array in column major

sparse matrix: compressed sparse column format

Distributed matrices are necessary when you're using ml algorithms on huge datasets
they're stored across many machines, and they can have a large number of rows and
columns

Different forms
RowMatrix: used widely and we'll focus on it
IndexedRowMatrix

CoordinateMatrix
BlockMatrix

Stores each row as a vector object

LabeledPoint is another important data type
it's a specialized vector that includes label and a feature vector

split the data into training and validation sets

Predication

Model Evaluataion

training set is used to train the model and a validation set is used to see how well the model
performs on data that wasn't used to train it

the usual split ration is 80% for the training set and 20% for the validation set

you can now use the trained model to predict target values of vectors in the validation set by
running predict on every element
you can see how well the model is doing on the validation set by examining the contents of
validPredicts:

Some predictions are close to original labels, and some are further off. To quantify the
success of your model, calculate the root mean squared error (root of the cost function
defined previously)

How to build your IT infrastructure?

Cloud Computing

Key Characteristics

Buy servers
how many? how much memory, disk, CPU, GPU?

how many users (particularly for special occasions)
Simple solution: provision for peak load, but underutilize in most times

Build a data center
where to physically put the servers?
what if the machines are crashed?

what if we need a software upgrade
cooling techniques
skilled engineers
Soln: All is possible without clod but at what cost?

cloud computing is about buying vs renting
instead of buying hardware, just renting an instance from a cloud provider (Amazon AWS,
Google Cloud)

Pay as you go
only pay for what you use with fine-grained metering, no up-front commitment (CPU
per hour, memory per GB)
Elasticity

Cloud Native Databases

Implications

users can release resources if not needed or request additional resources if
needed, ideally automatically (severless computing)

Virtualization
all the resources (cpu, memory, disk, network) are virtualized, no software is
bounded to hardware
resources are pooled to serve multiple users (multi-tenancy)

Automation
No human interaction (start/stop a machine, crash, backup)
everything is managed by cloud providers

Treat each cloud machine the same as in-house machine

run existing database systems directly
Cloud-native dbs are re-architectured to fully leverage the cloud infrastructure

resource/storage disaggregation

resource/storage pooling

DB software level needs to be aware of the underlying hardware-level resource
disaggregation

software level disaggregation
in order to enable more optimizations

Distributed database architecture needs to be changed
from shared nothing to shared storage

System Architecture

Main idea:

I/O traffic in traditional DB

I/O traffic in Aurora

Log is the database
only write redo logs on network
push log applicator to storage tier

Asynchronous processing
materialize pages in background

Buffer cache
to avoid network I/O
can rad pages upon cache miss

Only write redo log records

Writes

Transaction Commits

Replication: Scalability

Reads (Caching)

Crash Recovery

all steps asynchronous

4/6 quorum storage
7.7X less data movement

writes (trxns) send logs to storage asynchronously

durability: each log is durable (ack) with 4/6 quorums
Volume Durable LSN (VDL)

Log records can be lost, out of order

VDL: the largest one with all prior LSNs are durable

transaction commits asynchronously

when a transaction commits, mark its commit LSN
commit only if VDL >= commit LSN

1 writer and up to 15 reader instance

To keep data consistent between writer and readers
writer sends logs to readers at the same time
once the reader receives logs, it will check if the page is in the cache

replication lag: 20ms

Each reader instance has a buffer (cache)

upon read, check cache first
the cache is supposed to contain the latest data pages
except replication lags
What if the cache is full?

always evict a clean page: a page that's durable (pageLSN <= VDL)
Why? O.w need to write dirty pages to storage, which increases network overhead

if writer (master) is crashed, detected by HM (health monitor), promote a reader to writer
first, and perform recovery

what if the failed writer comes back? -> contact HM
sometimes two master -> many unexpected issues

Up to 5x faster than Cloud MySQL, but how about MySQL with local SSDs?

Hadoop is an open-source software framework that is used for storing and processing large
amounts of data in a distributed computing environment. It is designed to handle big data and is
based on the MapReduce programming model, which allows for the parallel processing of large
datasets. Its framework is based on Java programming with some native code in C and shell
scripts.

Hadoop is designed to process large volumes of data (Big Data) across many machines without
relying on a single machine. It is built to be scalable, fault-tolerant and cost-effective. Instead of
relying on expensive high-end hardware, Hadoop works by connecting many inexpensive
computers (called nodes) in a cluster.

Hadoop Architecture
Hadoop has two main components:

Hadoop Distributed File System (HDFS)

HDFS is the storage layer of Hadoop. It breaks large files into smaller blocks (usually 128 MB
or 256 MB) and stores them across multiple DataNodes. Each block is replicated (usually 3
times) to ensure fault tolerance so even if a node fails, the data remains available.

Key features of HDFS:

MapReduce

MapReduce is the computation layer in Hadoop. It works in two main phases:

Hadoop Distributed File System (HDFS): HDFS breaks big files into blocks and
spreads them across a cluster of machines. This ensures data is replicated, fault-tolerant
and easily accessible even if some machines fail.

MapReduce: MapReduce is the computing engine that processes data in a distributed
manner. It splits large tasks into smaller chunks (map) and then merges the results
(reduce), allowing Hadoop to quickly process massive datasets.

Scalability: Easily add more nodes as data grows.

Reliability: Data is replicated to avoid loss.
High Throughput: Designed for fast data access and transfer.

1. **Map Phase:** Input data is divided into chunks and processed in parallel. Each mapper
processes a chunk and produces key-value pairs.

This model is simple yet powerful, enabling massive parallelism and efficiency.

Advantages:

Disadvantages:

2. **Reduce Phase:** These key-value pairs are then grouped and combined to generate final
results.

Scalability: Easily scale to thousands of machines.
Cost-effective: Uses low-cost hardware to process big data.

Fault Tolerance: Automatic recovery from node failures.
High Availability: Data replication ensures no loss even if nodes fail.
Flexibility: Can handle structured, semi-structured and unstructured data.

Open-source and Community-driven: Constant updates and wide support.

Not ideal for real-time processing (better suited for batch processing).
Complexity in programming with MapReduce.
High latency for certain types of queries.

Requires skilled professionals to manage and develop.

Problem 1 [20 points]

Hadoop MapReduce is a popular framework for big data analytics. In the lecture, we covered a
simple example of WordCount that counts the number of times each word occurs in the input set
of files. In this problem, we extend WordCount to include document IDs.

In particular, assume that you are given a collection of input documents and there are no
duplicated words in the same file, but the same word might appear in di!erent files. The problem
is to compute for each word the documents that contain the word. You only need to show the
document IDs where the corresponding documents contain the word.

Example Input. Assume that there are three documents:

• Doc 0: “Hello World”

• Doc 1: “Hello Data”

• Doc 2: “Big Data”

Example Output. The expected output (without particular ordering) is:

• Hello: 0, 1

• World: 0

• Data: 1, 2

• Big: 2

That’s because the word “Hello” appears in both document 0 and 1. “Data” appears in both
document 1 and 2. “World” appears in document 0 and “Big” appears in document 2.

a. [8 points] Briefly explain your idea to solve the problem using Hadoop MapReduce.

Answer:

Map: The Map phase reads each line of the document and emits tuples in the form (word,
ID), where word is each word appearing in that line.

Reduce: The Reduce phase takes these tuples, groups them by word, and then writes the
results as (word, sorted set of IDs).

2

b. [12 points] Write down the Map() function and Reduce() function to perform the above task
using Hadoop MapReduce. You can write pseudocode.

Answer:

3

Problem 2 [20 points]

Crash recovery is important in big data analytics. In this course, we covered failure handing in
databases, Hadoop, and Spark. But they have di!erent ways to handle failures and we have to
understand why.

a. [10 points] If you compare databases with Hadoop, what’s the di!erence of handing crash
recovery? and why? You may explain the pros and cons of the approaches they used.

Answer:

Databases

• Pros: Using transactions and logs for crash recovery is more reliable and maintains data
consistency.

• Cons: Without replicas, restarting a failed operation can be costly and slow down the
system.

Hadoop

• Pros: Due to the presence of replicas, Hadoop can recover from failures by switching to a
replica without terminating the current process.

• Cons: This approach requires additional storage to maintain the extra replicas.

4

b. [10 points] If you compare Hadoop with Spark, what’s the di!erence of handing crash
recovery? and why? You may explain the pros and cons of the approaches they used.

Answer:

Hadoop

• Pros: By using replicas, Hadoop can recover from failures without restarting the entire
process, simply switching to a replica.

• Cons: Maintaining these replicas requires additional storage.

Spark

• Pros: Spark’s use of cached intermediate RDDs allows for rapid recovery after a failure.

• Cons: Tracking lineage information for each operation can increase the overall time com-
plexity.

5

Problem 3 [20 points]

In this problem, you will answer questions related to HBase.

a. [10 points] Conceptually, HBase and databases are two approaches to store tables with
columns and rows. What’re the advantages of HBase over databases in storing tables? In
other words, when to use HBase over traditional database systems?

Answer:

HBase is especially useful when dealing with extremely large tables in terms of both rows
and columns, and when these tables contain many empty (sparse) cells. It can also handle
structured, semi structured, and unstructured data e”ciently, providing high performance
random access in such scenarios.

6

b. [10 points] If you compare HBase with HDFS, what’re the pros and cons of the two ap-
proaches to store large-scale data?

Answer:

HBase

• Pros: Provides fast random access to specific pieces of data.

• Cons: Less e”cient for purely sequential reads and writes, and requires more complex setup
and maintenance compared to HDFS.

HDFS

• Pros: O!ers very fast sequential data access, making it e”cient for bulk reads and writes.

• Cons: Provides slow random access due to its design for batch-oriented processing rather
than point queries.

7

Problem 4 [20 points]

In this question, you will answer questions related to Spark.

a. [5 points] RDDs are fundamental to Spark. Why are RDDs important to Spark?

Answer:

RDDs are fundamental to Spark because their in-memory computation reduces disk I/O,
speeding up processing. They also provide built-in fault tolerance, ensuring data recovery in
the event of failures. By supporting parallel processing through partitioning, RDDs optimize
resource usage. Additionally, they minimize redundant computations and help maintain data
consistency.

b. [5 points] Spark uses lazy evaluation to execute the jobs. Explain why.

Answer:

Spark employs lazy evaluation in executing jobs, which enables it to optimize processes and
sidestep superfluous computations. This approach ensures that Spark caches only the results
essential for the final computation. Such a strategy leads to a more e”cient utilization of
resources.

8

c. [10 points] Spark lineage graph includes two types of dependencies: narrow dependency and
wide dependency. For the distributed join operation, which dependency does it belong to?
Choose only one answer from the following list.

(1) narrow dependency;

(2) wide dependency;

(3) Both narrow and wide dependency.

Explain why.

Answer: (3) Both narrow and wide dependency.

If the data partitioning and join keys are such that each partition of the parent RDD is used
by at most one partition of the child RDD, then the distributed join operation in Spark has
a narrow dependency. Otherwise, it has a wide dependency. It is also possible for the same
operation to exhibit both narrow and wide dependencies.

Narrow Dependency: If the join keys align with the partitioning keys, the join can be per-
formed entirely within each partition, without accessing data from other partitions or nodes.
In this scenario, each partition of the parent RDD corresponds to at most one partition of
the child RDD, resulting in a narrow dependency.

Wide Dependency: If the join keys do not align with the partitioning keys, Spark must
reshu#e the data across di!erent partitions or nodes to gather all the relevant keys for the
join. This scenario creates a wide dependency, as it involves combining data from multiple
partitions and often requires significant data movement across the cluster.

9

Problem 5 [20 points]

a. [10 points] Spark GraphX uses the BSP (Bulk Synchronous Processing) model as the un-
derlying computation model. Explain the pros and cons of BSP.

Answer:

Pros:

• Simplicity: The structure is easy to understand.

• Fault Tolerance: Improved detection and recovery from failures.

• Synchronization Barriers: Makes failure detection and recovery more manageable.

• Scalability: E”ciently handles large-scale workloads.

Cons:

• Synchronization Overhead: May cause ine”ciency due to waiting at synchronization points.

• Workload Distribution Issues: E”ciency drops if tasks complete at significantly di!erent
times.

b. [10 points] Cloud-native databases are designed to separate the storage engine from the
compute engine. Explain the pros and cons of this architecture.

Answer:

• Pros: Storage and compute resources can be customized separately, allowing for more precise
resource management.

• Cons: Increased reliance on network performance and stability, which can a!ect overall
system e”ciency.

10

Problem 3 [20 points]

Consider relations R(a, b) and S(a, c, d) to be joined on the common attribute a. Assume that there
are no indexes available on the tables to speed up the join algorithms.

• There are B = 36 pages in the bu!er

• Table R spans M = 1800 pages with 100 tuples per page

• Table S spans N = 600 pages with 60 tuples per page

Answer the following questions on computing the I/O costs (in terms of number of pages) for
the joins. You can assume the simplest cost model where pages are read and written one at a time.
You may ignore the cost of the writing of the final results.

Some numbers Here are some numbers that may be useful in this problem:

• 1800
36 = 50; 1800

35 = 51.4; 1800
34 = 52.9; 1800

33 = 54.5; 1800
32 = 56.3

• 600
36 = 16.7; 600

35 = 17.1; 600
34 = 17.6; 600

33 = 18.2; 600
32 = 18.8

• log35 50 = 1.1; log35 51 = 1.1; log35 52 = 1.1; log35 53 = 1.1; log35 54 = 1.1; log35 55 = 1.1;
log35 56 = 1.1; log35 57 = 1.1

• log34 50 = 1.1; log34 51 = 1.1; log34 52 = 1.1; log34 53 = 1.1; log34 54 = 1.1; log34 55 = 1.1;
log34 56 = 1.1; log34 57 = 1.1

• log35 16 = 0.8; log35 17 = 0.8; log35 18 = 0.8; log35 19 = 0.8

• log34 16 = 0.8; log34 17 = 0.8; log34 18 = 0.8; log34 19 = 0.8

Questions

a. [6 points] For the Grace hash join algorithm (with S as the outer relation and R as the inner
relation), what is the I/O cost of partition phase? What is the I/O cost of the probe phase?

Solution:

Partition Cost: 2 → (M +N) = 2 → (1800 + 600) = 4800

Probe Cost: M +N = 1800 + 600 = 2400

Page 6 of Page 9

b. [5 points] For the block nested loop join with R as the outer relation and S as the inner
relation, what is the I/O cost?

Solution:

M + ↑ M
B→2↓ ↔N = 1800 + ↑180034 ↓ ↔ 600 = 1800 + 31800 = 33600

c. [9 points] For the sort-merge join with S as the outer relation and R as the inner relation,
what is the I/O cost of sorting S? What is the I/O cost of sorting R? What is the I/O cost
of merging?

Solution:

Sorting S:

passes = 1 + ↑logB→1 (↑NB ↓)↓ = 1 + ↑log35 (↑60036 ↓)↓ = 1 + ↑log35 17↓ = 1 + ↑0.8↓ = 2

2N ↔ passes = 2 → 600 → 2 = 2400

Sorting R:

passes = 1 + ↑logB→1 (↑MB ↓)↓ = 3

2M ↔ passes = 2 → 1800 → 3 = 10800

Merging:

M +N = 1800 + 600 = 2400

Page 7 of Page 9

High Dimensional Vector Data

Data -> Vector -> Analytics, this is know as vector embedding

How to find similar vectors ?

Vector DBs can address many critical limitations of LLMs
hallucination: incorrect or fabricated answer

lacking domain-specific knowledge
up-to-date information

High dimension
top k similar vectors

sometimes you don't even know the exact answer (personalized recommendation)

sometimes we just need fast performance

Indexing and Searching

Evaluation Metrics

The outiline:

hard to have both

1. Preprocessing stage (offline): build index
build a proper index on the data vectors
we don't care too much about the time spent here

2. Online search stage
given a query, search the index to know potentially relevant vectors
this can filter out many non-relevant vectors

this stage is more important

Query time -> performance

space overhead, especially memory overhead -> cost
Accuracy

the ratio between the returned results vs the true top k results
Others

index construction time
update cost: new vectors

introduction

main memory vector index
disk based vector index

Vector indexes (main memory)

Quantization is a way of approximation

Quantization in high dimensional space

IVF_FLAT

vector search in databases

Quantization based indexes (widely used in vector DBs, IVF_FLAT, IVF_PQ)
Graph Based Indexes (NSW, HNSW, also used widely in vector DBs)
tree-based indexes

hash-based indexes

it's basically clustering (k-means)

index phase
cluster n vectors into k clusters (quantization)

A naive approach:

Since we know the centroid c, we can pre compute the distance of (c,vj)
then dist(q,vi) = dist(q,c) + dist(c,vi)

Now we only need 1 step (instead of d steps) to compute distance!

With compression we can reduce the space overhead of IVF_FLAT

Example: YouTube 8M data includes 1.4 billion vectors
each vector takes 1024 dimensions (each float takes 32 bits)
5.6TB space memory !

Basic Idea of Compression

centroids: c0, ..., ck-1

Search phase
given a query q, find the closest u clusters based on centroids
u: user-defined parameter

only scan the vectors in the u clusters
But how do we quickly compute the similarity between q and a vector vi, in a cluster?

A for-loop to compute dist(q,vj)
d steps (where d is dimensionalty, d = 100)

instead of using 32 bits to represent a float number

use L bits (L=8)
think of 1-d quantization

every float number in a vector is quantized into (0...2^L-1)
The 1.4 billion vectors will take 1.4TB space (if L=8)

Compression: Product Quantization (PQ)
main idea: compress between multiple dimension together

Each vector is compressed using M * L bits (M=8, L=8)

Regardless of the dimensionality

every vector is partitioned into M subvectors, M=8

every subvector is compressed together using L bits
To compress subvectors
Each vector vi is partitioned into M subvectors (0 to m-1) (m subspace)
all the vectors in the same subspace are compressed together using high dimensional
quantization clustering (clustering)

example: consider the 1.4 billion vectors again

Very good way of compression
Another benefit of PQ: Fast distance computation

IVF_PQ

Graph-Based Vector Index

but the parameters can be tuned based on dimensionality

each vector will take 8 * 8, (8 bytes)
the 1.3 billion vectors will take 11.2GB space

all the distance in subspace can be precomputed
Example:

similar to IVF_FLAT
difference is that

each cluster applies PQ

but using residual vectors (instead of the original in the cluster)

Search process is the same

main idea
for each vector, pre-compute the nearest neighbor
connect them using a graph

convert vector search problem to graph traversal problem

Navigable small worlds(NSW)
add new vertices to the index

for each new vertex (vector), find the closest m neighbors seen so far and connect with
them

Balance: index construction time and query performance

Can be extended to KNN by maintaining a result set and a candidate set

terminate if the min distance in the result set > max distance in the candidate set

