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Application (fil} name, chunkAidex) GFS master = /foo/bar
GFS client |,/ File namespace ,” chunk 2ef0

/ (chunk handl, i
chunk locatifns) /§§

- " 4
- Instructions to chunkserver /’
(—\u server state

(chunk handle, byte range) _#* N
GFS chunkserver GFS chunkserver

‘ Linux file system
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chunk data Linux file system
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Tault  Tolerart

* Chunkserver
- Every chunk is replicated in 3 chunkservers

* Master
- Single point of failure
- Write-ahead logging to disk (called operation logs)
- Can also replicate operation logs to multiple servers

* Data integrity: what if a chunk is corrupted?
- Use checksums
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- place chunks on servers with below-average disk space utilization
(goal is to equalize disk utilization)

- place chunks on servers with low number of recent creations
(creation > heavy write traffic in near future)

- spread chunks across racks



Place chunks on servers with below-average disk space utilization because our goal is to
equalize disk utilization

place chunks on servers with low number of recent creations, prevents heavy write traffic in
near future

spread chunks across racks

GARBAGE COLLECTION

GFS does not immediately reclaim physical storage after a file is deleted

"Lazy" garbage collection mechanism
master logs are changed to a "hidden file name"
master removes hidden files during regular file system scan (3 day window to
undelete)

HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

Open source clone of GFS
similar assumptions, design, architecture
Differences
no support for random writes, append only
platform independence (implemented in java)

Terminology

HDFS -> GFS
namenode -> master
datanode -> chunkserver
block -> chunk



edit log -> operation log

HDFS Architecture
Metadata (Name, replicas, ...):
Metadata ops v[ Namenode /home/foo/data, 3, ...
Block ops
Read Datanodes Datanodes

' 1 I
OO . = Replication S =
[ [ J:I Blocks
\ \ J N J
Rack 1 Wiite Rack 2

Bigtable: a distributed storage system for structured data
(HBase is an open-sourced Bigtable)

Issues with HDFS

inefficient for random accesses (optimized for large-file sequential accesses)
inefficient fro writers (optimized for read)

inefficient for supporting structured/semi-structured data, in particular big tables (AKA
sparse tables)

Usually when tables have lot of columns there are several empty entries.

Traditional DBs must store empty entries, which is a waste of space.

Sparse table is a semi-structured data model where tuples do not exactly follow a fixed schema
Formally, a Bigtable is a sparse, distributed, persistent, multidimensional sorted map

The map is indexed by a row and column key, and a timestamp.
Each value in the map is an uninterpreted array of bytes.



UserlD Name Age City JobTitle Company Salary Address

1 test1 SDE S1 Al
2 20 Sales C2

3 Chicago C3 S3 A3
4 test4 New York Consultant S4

5 tests 25 AS

* We can use key-value store to represent this table:
- (Row ID + Column Name = Value)
- Key is a compound key
- This can reduce space

(l.name, testl)

(1,JobTitle, SDE)

(1.Salary, S1)
(only store non-empty cells) Y
JUE key value

For new updates we do not update immediately (lazy update)
must append a new tuple of the same key but with a different timestamp for every cell.

every cell is a collection of pairs with (value, timestamp)
represents the value at that time
{(SDE,0),(Senior SDE, 1)}

Support timestamp in the key-value model:

- (Row ID + Column Name + Timestamp = Value)

- This can support updates efficiently
(l.name.0, testl)
(1,JobTitle,0, SDE)
(1,JobTitle,1, Senior SDE)

(1,Salary,0, S1)

\ J \ )
Y Y

key value

Bigtable organizes the columns into column families
Easier to manage because there are many columns

every column is referenced by family



Personalinfo Jobinfo

UserlD Name Age City JobTitle Company Salary Address
1 testl SDE S1 Al

2 20 Sales &2

3 Chicago C3 S3 A3

4 test4 New York Consultant S4

5 tests 25 A5

Naturally we need to include column families in the key value and thus:

e

- (Row ID + Family:Column Name + Timestamp = Value)

(1,Personallnfo:name,0, testl)
(1,Personallinfo:JobTitle,0, SDE)
(1,Personalinfo:JobTitle, 1, Senior SDE)
(1,Personalinfo:Salary,0, S1)

\ J \ )
Y Y

key value

HBASE STORAGE

on top of HDFS
HBase tables are divided horizontally by row key range into regions

regions are the basic building elements of HBase cluster that consists of the distribution of
tables and are comprised of column families

region server run on HDFS datanode which is present in hadoop cluster



storage inside each region is based on log-structured merge tree

,f[ Region Region Region
server server server
f Region Region Region
\_ Region Region Region

LOG STRUCTURED MERGE TREE (LSM)

used widely in modern DBs systems

more than a data structure or storage engine, it is a design principle (okay)

B-tree insertion incurs many random writes -> LSM converts random writes to sequential
writes

B tree insertion incurs high costs due to in place update -> LSM uses out of place update
Any static or hard to update structure (vector index) can use LSM

Basic idea of LSM

if you have existing structure like index table, and new updates come in
do not update existing structure directly

instead store new updates in separate structure

merge the two structures later on

this is know as out of place update

it is an immutable index (while B tree is mutable index)



it has two parts, main memory component (mutable), disk component (immutable)

Cq tree Co tree
| l |
I I I
Disk Memory

Initially CO and C1 are empty

when data comes go to CO

when CO's size exceed a threshold, flush to disk becoming C1
new data comes again go to CO

when CO's size exceed a threshold merge with C1

no random writes to the disk tree C1

only sequential accesses to C1 with a big chunk
background compaction

improve performance for write intensive workloads

LSM can contain multiple levels

advantage of LSM: no random writes, no in place update



Limitations of Hadoop MapReduce

good for one-shot queries when analyzing data (word count, table join, log search) convert
to one MR job
inefficient for iterative queries

must have multiple map reduce

shows up in many ml task (gradient descent)

applications that reuse intermediate results across multiple computations

Map »] Reduce »  Map »1 Reduce >

HDFS HDFS HDFS HDFS

An iterative query includes multiple mr jobs

output of the 1st mr job is the output of the 2nd mr job .....
Each phase outputs intermediate results in HDFS(on disk), very slow

SPARK

improved over hadoop

in memory computing, whenever possible store everything (including intermediate results)
in memory instead of disk

much faster, up to 10 times faster on some iterative workloads, (we care about performance
in big data systems)

has more function, more than simple mr jobs, easier for big data analytics
written in Scala but can use Java or Python

Spark components

core
sql

graph
streaming
mi



Streaming sources include Spark Streaming can use  Spark Streaming can use
Kafka, Flume, Twitter, HDFS, GraphX features on the machine-learning models and

and ZeroMQ. data it receives. Spark SQL to analyze streaming data.
Spark Streaming } 5 Spark ML & MLIib Spark MLIib models
Streaming sources - - use DataFrames to
represent data.
DStream / ME moael Spark ML uses RDDs.
bl Both use features
C from Spark Core.
>
Spark GraphX Spark Core Spark SQL
Data sources include
Graph RDD RDD Dataframe Hive, ISON, relational
databases, NoSQL
databases, and
Parquet files.
Spark Streaming
uses DStreams to :
periodically Filesystems Data sources
create RDDs.
Spark GraphX uses Spark Filesystems include HDFS, Spark SQL transforms
Core features behind Guster FS, and Amazon $3. operations on DataFrames
the scenes. to operations on RDDs.
SPARK CORE

to keep track of different computation stages, spark defines a new concept called Resilient
Distributed Datasets (RDD)
RDD abstracts the data (or objects) transmitted among different computation stages
RDD is the basic unit of computation and transformation
RDD is read-only (immutable), partitioned collection of records (think of it like an array or a
list but it is a collection of items , a set??)
RDD can be created from:
data in memory or on storage (base RDD)

other RDDs (transformed RDD)
CREATE RDD



# SparkContext s¢: Spark environment that stores the configuration
# solution 1: from HDFS

# textFile is a build-in method for parsing various types of data files

val rdd1 = sc.texiFile("hdfs://file-path")
# solution 2: from a local file

# solution 3: convert an in-memory array to an RDD (with 3 partitions)

# by default, it's the num of cores in your server

printin(rdd3.getNumPartitions)
# solution 4: from another RDD

val rdd4=rdd3.map(x=>x+10)

All RDDs of a task can form a graph, called lineage graph
one RDD can be derived from one or more RDDs
overall data flow is a graph

Fault tolerant: can be reconstructed on failure using lineage graph or checkpointed
no need for replication

RDDs are stored in memory can also persist on disk
when possible RDDs are stored in memory for fast performance

can be reused for multiple computations efficiently (without disk access)

can also persist on disk when necessary (insufficient memory)
Text Search example

Load error messages from a log into memory, then interactively search for various patterns.

lines = spark.textFile(“hdfs://...”) —

errors = lines.filter(x => x.startsWith(‘ERROR”)) _

messages = errors.map(y => y.split(\t')(2))
messages.persist()

messages.filter(_.contains(“PHP”)).count -

messages.filter(_.contains(“SQL”")).count

RDD OPERATIONS



Transformation: transform one RDD to another one

Action: take some actions on a particular RDD, like count(),...

RDDs provide more functionalities than Hadoop MR
RDD operations are coarse-grained, applied to all items on RDD

Transformation RDD
* map(f: T=2U)
- RDDI[T] = RDD[U]
- Convert an old RDD to a new RDD by applying the function f to
each item in the old RDD

data =[1,2,3,4,5]

* flatMap (f: T=seq[U])
- RDD[T] =» RDD[U]
- Similar to map(), but it'll flatten the output
data = [2,3,4]

# range(1,x) will print out values from 1..x-1
# output: [[1], [1, 2], [1, 2, 3]]

iIDUE e



e filter(f: T=> Bool)
- RDD[T] & RDDIT]

- Convert an old RDD to a new RDD by applying the function f to
each item in the old RDD and only showing the qualified items
- You can think f as a filter

data =[1,2,3,4,5]

*reduceByKey(f: (V.V) > V)
-RDD[(K,V)] » RDD[(K.V)]

—You can also define a function for more complicated
computations

*join()
- (RDD[(K, V)],RDDI[(K, W)]) => RDD[(K, (V. W))]
= It merges two RDDs based on the same key



* union()
-1t merges two RDDs (keeps duplicates if any)

map(f : T=U) : RDD[T] = RDD[U]
filter(f : T=> Bool) : RDD[T] = RDD|T]
flatMap(f : T = Seq[U]) : RDD[T] = RDD[U]
sample(fraction : Float) : RDD[T] = RDDI[T] (Deterministic sampling)
groupByKey() : RDD[(K, V)] = RDD[(K, Seq[V])]
reduceByKey(f : (V,V) = V) : RDD[(K, V)] = RDD[(K, V)]
Transformations union() : (RDDI[T],RDDI[T]) = RDD|T]
join() : (RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U]) = RDD[(T, U)]
mapValues(f : V= W) : RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]

ACTION RDDS

action RDD performs actual computation on the input RDD
—Count(): RDD[T] => Long
- Collect(): RDDIT] => Seq|[T]
-Reduce(): RDD[T] =>T
-Save(): Outputs RDD to a storage system, e.g., HDFS



* Count()

- Return the num of items in an RDD

* Collect()
-Return the items in an RDD

* Reduce(f: (TT) =>T)
-RDD[T] =T
- Reduce the items of the input RDD using the function specified

- Use the function to compute the first two items and produce a
new item. Then use the function to compute the new item and
the 3d item and produce another new item...

SPARK DAG (directed acyclic graph)
workflow is represented as a DAG

DAG tracks dependencies (lineage)
nodes are RDDs



» arrows are transformations

SPARK DEPENDENCY
* Narrow dependency: Parent partition is used by
only one child partition a— e
- Examples: map, filter - —
— —

7 \

* Wide dependency: Parent partition is used by
many child partitions
- Example: reduceBy

SPARK EXECUTION

« Lazy evaluation
» data in RDDs is not processed until an action is performed
«+ do actual evaluation only when we see action RDDs (only in collect() will trigger actual
evolution & computation)



lines.flatMap(line => line.split(* "))

' map(word => (word, 1))
reduceByKey((x.y) => x + )

FAULT TOLERANCE

if a server executing RDD is crashed, we simply reconstruct the RDD from the lineage
graph

For fast recovery, you can persist some intermediate RDDs so that you don't have to rebuild
from beginning (checkpointing)



SparkSQL is used to query data on spark easily

especially for structured data with schemas

No need for tedious spark RDDs

simple SQL queries automatically translated to spark RDDs

GOALS:

support relational processing both within spark programs and external data sources using
friendly API

high performance using established DBMS techniques

support new data sources, including semi-structured data and external databases amenable
to query federation

enable graph processing (advanced analytics) and external databases
enable the use of advanced analytics algorithms, like graph processing and ml

SPARK SQL ARCHITECTURE

JDBC | | Console s, Scals. Python)
v v v
Spark SQL DataFrame API
Catalyst Optimizer
& Y
Spark

Resilient Distributed Datasets

DataFrame:
new concept to abstract RDDs for structured data (like a table)
Types of interfaces:

DataFrame API
SQL over DataFrame



DataFrame is designed for handling structured, distributed data in a table-like representation
with named columns and declared column types. It is a higher-level abstraction than RDD.

has schema(types), allows more meaningful operations/queries over columns and rows.

For RDD we only know that there is a collection of items (not knowing data type of each
fiels)

Name Age
Person String Int Double
Person String Int Double
Person String Int Double
Person String Int Double
Person String Int Double
Person String Int Double

RDD DataFrame ¢

We can create DFs from a csyv, json

Schema will be automatically inferred
Can specify options("inferSchema","true")

We can print out the dataframe dfs.printSchema() note nullable means the column can be
null.

Can also create data frame from RDD with/without schema
Two approaches for query DataFrame:

DataFrame operations
SQL queries over DataFrame

Operations:

select one or more columns

limit(k) to print out first k results

filter to add some condition like age > 23

GroupBy and use max(),min(),avg()

sort(), orderby(), (by default we have ascending order)



join two dataframes based on common attributes

employees
.join(dept, employees("deptId") === dept("id"))
.where(employees("gender") === "female")

.groupBy (dept ("1d"), dept("name™"))
.agg(count ("name"))
SQL Queries over DataFrame
DFs can be registered as temporary tables in the system catalog and queried using SQL

users.where(users("age") < 21)
.registerTempTable ("young")
ctx.sql ("SELECT count(*), avg(age) FROM young'



Data Streaming

Many applications must process large streams of live data and provide results in near real
time.

loT data with sensors

Social Network trends

website statistics

monitoring
We do not know the entire data set in advance

Data is generated and ingested continuously

Think of data as infinite and non-stationary(the distribution changes over time)
Applications

Mining query streams (which queries are more frequent today than yesterdays)

Mining click streams (which of its pages are getting unusual number of hits in the past hour)
Mining social network new feeds (look for trending topics)

IP packets monitored at a switch (information for optimal routing, detect denial of service
attacks)

STREAM vs BATCH
Batch processing:

see the entire data in advance
able to store all data

Stream processing:

don't see the entire data in advance

can't store all the data



Query

l

Data Stream Output
Query Processor >

o 4:7:1,9,3,9,2,2,8,5

\J

No predetermined beginning and end

Predetermined beginning and end Query

. 1

Batch/Database Output
— Query Processor >

E.g., table, file

Example streaming K-largest elements:

Suppose we have a stream (infinite) of integers, how do we find the largest k integers so
far?

Constraints:

cannot store all the elements
can only look once
use O(k) space

Main idea:

use a min heap of size k

top element is the smallest and it represents the kth largest element seen so far
the heap stores the answer

scan every element in the stream

if its smaller than the top, we discard it

otherwise
push e to the heap, will automatically do heap adjustment

delete the top, bingo! heap is updated

time complexity is nlog(k)

Spark streaming



spark is a batch processing system

main idea: discretized stream

run a streaming computation as a series of very small stateless deterministic batch
jobs

chop the incoming data into intervals of X seconds (1 second)

run spark within each interval -> batch processing within each interval (using spark
RDD)

final result: can be returned across different intervals

live data stream

Spark

\’\/‘ " | Streaming

batches of X seconds —

—_—

U

processed results

Spark streaming divides input data streams into batches and stores them in Spark's
memory



It then executes a streaming application by generating Spark jobs to process the batches

Spark Streaming
. streaming
) divide data .
\> stream into computations
— ] batch expressed using
live input aiches DStreams
data stream
batches generate
of input
data as RDD
RDDs trangfor-
@ mations
Spark A
< [ Task Scheduler ]< Y | | Spark batch jobs
[Memo Mana er] to execute RDD
batches of y 9 transformations
results

DStream (discretized streams)

Sequence of RDDs representing a stream of data

DStream is a sequence of immutable, partitioned datasets (RDDs) that can be acted on by
deterministic transformations.

These transformations yield new D-Streams and might create an intermediate state in the
form of RDDs

Note there are stateless RDDs (default) and stateful RDDs

Streaming Word Count:

r

[ hello world hello ] [ hello spark ] [ hello big data ]

1 second 1 second 1 second
Output (hello,2) (hello,1) (hello,1)
(world, 1) (spark,1) (big.1)

(data,1)



DStream Operations

Stateless transformation

Only show the results within current time interval

word count of the current interval

API's that we've learned in spark core: map(), flatMap(), filter(), etc
Stateful transformation

also consider the results of prior intervals

word count of the words received so far

word count in the last 10 seconds
Stateful Operations:

update StateByKey()
compute the result based on all the history data received so far

need to specify an update function of how to change the status

window operation
compute the results in a specified moving window (last 10 seconds)

updateStateByKey()
>

[ hello world hello ] [ hello spark ] [ hello big data ]

(hello,2) (hello,1) (hello,1)

(world, 1) (spark,1) (big.1)
(data,l1)

Initial !

emot | (hello,2) (hello,3) (hello,4)
Py (world, 1) (world, 1) (world, 1)
(spark,1) (spark,1)

(big,1)

N Result in the current interval + prior result | (data.1)

Window Operations:

compute the result of the last time window

window length: multiple units of a time interval
if the time interval is 3 seconds, then window size can be 3sec,6sec,9sec, etc

sliding interval: time to trigger computation: multiple units of a time interval:



specify when to compute the results

it's set to be 3 seconds, then it'll show the results at the end of each time interval

-

[ hello world hello ] [ hello spark ] [ hello big data ]

(hello,3)
(world, 1)
(spark,1) (hello,2)
(spark,1)
(big,1)
(data,1)

reduceByKeyAndWindow():

computes the result in the current window instead of the current interval



Graph
a collection of vertices and connected edges.
storage: adjacency list or adjacency matrix
directed and undirected graph
directed graph: the order of the two vertices in an edge matters
undirected graph: the order doesn't matter

Property Graph

it is a directed multigraph with user defined objects (or properties) attached to each vertex
and edge.

note: it's possible to have multiple edges between the same two vertices, because two

vertices may have different relationships, friends and coworkers, or multiple flights
between two vertices

Edge property Vertex Edge Vertex property
N\ / / /
\ “// // ’/
\a Relation: / /
friend /‘/ / /
,"” ‘//
Name: Milhouse | _ : Name: Bart
Age: 12 Age: 12
Relaton: | /- Relation:
father mother

Name: Homer
Age: 39

Name: Marge
Age: 39

Relation:
married To

Graph Computation Model: BSP

BSP: Bulk Synchronous Processing

- a programming model and computation framework for parallel computing

- multiple computing processors, servers of cores

- computation is divided into sequences of supersteps

- each superstep, a set of processors, running the same code, executes concurrently and
creates messages that are sent to other processes.

- superstep ends when all the computation in the superstep is complete and all messages have
been sent



- a barrier synchronization at the end of the superstep
- the next superstep begins
- until the program terminates(reach mad num of iterations or converges)

Many graph algorithms are performed in different iterations (pagerank or shortest paths)

in a superstep (iteration):
every node will perform a compute() function based on the neighbor info received
(update some info for pagerank or shortest path)
the node will sent the new message to its neighbors

after every node finishes the compute(), the next superstep starts

Computing the max:

* Superstep 0: initialization

] - Every node has its initial value
e 9 ° Superstep 0 - It'll send its current value to all the neighbors

, » Superstep 1

e re‘,e Super. - Every node will compare its current value with the values
uperstep 1 ! . .
received from its neighbors

- Node A receives 6 from its neighbor B and compares 6
with its old value 3, and then changes to 6

o ee e Superstep 2 - If a node doesn't change the value (or status), it'll

become inactive and will not send new messages to
neighbors

e e@e Superstep 3 » Superstep 2

- It a node doesn't receive new messages, it'll become
inactive

Figure 2: Maximum Value Example. Dotted lines . . L .
are messages. Shaded vertices have voted to halt. * The process confinues until every node is inactive (OI’

reaches the max iterations)

Single Source Shortest Paths:

Finding shortest path between a single source vertex and every other vertex in the graph.
Each vertex stores a value denoting the distance from source vertex to this vertex
Value at each vertex is initialized to INF
In each superstep
receives messages from its neighbors with updated potential minimum distances from
source vertex
if minimum of these updated values is less than the current minimum distance of the
vertex, value is updated and potential updates are sent to the neighbors (current value
+ outgoing edge weight)
In first superstep, only source vertex will update its value to zero and send update
messages to its neighbors

algorithm terminates when no more updates



« Ais the source

« Ais the source

« Superstep = 2

°B=5C=3
= B sends messages C sends messages
*+ D=5+2=7 B=3+1=4

D=3+5=8

« Superstep =1 INF
s A=0
= A sends messages
- B=0+5=5
- C=0+3=3
+ Ais the source 4 ” )

- Superstep = 3 3
°B=4;D=7
> B sends messages
*D=4+2=6

A is the source

Superstep = 4 3
o D=6

Since there will be no incoming messages in next step, the
algorithm will terminate

Values at vertices are the shortest distance from the source

Spark GraphX

GraphX is a graph processing system built inside Spark

It relies on RDDs as the building blocks and implements many graphs algorithms for large

scale data based on the BSP model
provides APls

graph construction
graph transformation
graph algorithms

Graph Construction:

Based on vertexRDD and EdgeRDDs



VertexRDDs: contain tuples, which consist of two elements; a vertex ID of type
Long and a property object of an arbitrary type

EdgeRDDs: contain edge objects, which consist of source and destination vertex ID (sourcelD
and destinationld) and a property object of an arbitrary type(attr, field)

You can create a Spark graph using VertexRDD and Edge RDD (there are other
construction methods)

Shortest Path Algorithm

Spark implements the shortest-path algorithm with the ShortestPaths object.

It has only one method, called run, which takes a graph and a sequence of landmark vertex
IDs

The returned graph's vertices contain a map with the shortest path to each of the

landmarks, where the landmark vertex ID is the key and the shortest-path length is the
value.



Linear regression:

using a linear function to model the relationship between two variables by fitting a linear
equation to observed data.

Notation:

n = number of features

x7(i) = inpute features of ith training example
(x7(i))j = value of features j in ith training example
m = number of examples

choose the parameters we want to estimate so that the function/model we learn is close to y
on all the training examples
cost function (or loss function)
quantify the difference between the estimate value of model and true value
m

. AN 2
| 1 )
J(00,601) = 5= > (he(x) —y)
1=1
easy for derivatives averaged square of differences

Goal: choose 6, and 6, to minimize the cost function

ADUE

. . N
J(0o,01) = 5 Z (ho(zV)) — yD)

easy for derivatives averaged square of differences

{DUEGO(Jl choose 6, and 6, to minimize the cost function

Outline:

start with (random parameters)
keep changing parameter to reduce cost function until we end up at a minimum



Gradient descent Algorithm

repeat until convergence {

0
J (60,0
g (00:61)

0; :=0;

RVACY

learning rate

Linear regression with one variable

Gradient descent algorithm

repeat until convergence {

0, = 0 — a-2 (60, 0,)

06
(for j =1 and j = 0)

(for j=0and j=1)

partial derivative of ;> move to the steepest direction

Linear Regression Model

ho(z) = 60y + 01

m ) N
.](90,91) = ﬁ z (hg(:l,‘(')) — y(’))
=1

> ¥o= |
Hypothesis: hg(x) = 02 = Qg + 0121 + Oowo + - - + 0,2,
Parameters: 6y, 0,...,
Cost function: m
J(é’o,é’],...,en) = Z(he( ())_y(l))Q
=1
Gradient descent:
Repeat {
. 9
9.7 — 9} o a{)%ojj(e()a < aen)
} (simultaneously update for everyJ = 0,...,n)

Drinnrmm

Large Scale Machine Learning



If data is huge with billions or trillions of training examples, each iteration is very slow
Distributed ML

Use many machines
Each machine processes a partition of data
Each machine computes the gradient on that machine

Finally, combine all the gradients

m

0; =

/Computerl
E ¥
Training set — = \

Computer 2

JE
- reduce phase

Computer 3
\ "_-‘J:
C —

Computer 4

Combine results

\

map phase

Distributed ML with Map-Reduce

Map
workers do computation locally
map the training examples to temp
Reduce
compute the sum of all temp



Server side
compute the derivatives
Broadcast parameters to all workers

continue the next iteration
ML in Spark

all the advantages of Spark extend to machine learning
spark's distributed nature: leverage Spark's RDDs to scale to large-scale data
Spark's unifying nature: offer a platform for performing most tasks in man applications
can collect, prepare, and analyze the data (various types)
MLIib (spark, mllib)
based on Mibase project in Berkeley
more mature
based on RDDs

ML (spark.ml)

new ml package, still developing
end-to-end pipeline
based on dataframe

Data Types in MLIib

Two building blocks
vectors, matrices

For each building block there are:

local version vs distributed version:

local: stored on a single node

distributed: based on RDD, stored on multiple nodes
Dense version vs sparse version

sparse: contains a lot of O's

dense: not that many 0's

Underlying linear algebra operations are provided by Breeze and jblas
Dense vs Sparse Vectors

Dense vector
it can take all elements as inline arguments or

it can take an array of elements



Sparse vector

Need to specify a vector size, an array with indices (of non-zero values), and an array
with values

Matrix

a local matrix has integer-typed row and column indices and double-typed values, stored on
a single machine.

dense matrix: entry values are stored in a single double array in column major

sparse matrix: compressed sparse column format
Distributed Matrix

Distributed matrices are necessary when you're using ml algorithms on huge datasets

they're stored across many machines, and they can have a large number of rows and
columns

Different forms
RowMatrix: used widely and we'll focus on it
IndexedRowMatrix
CoordinateMatrix
BlockMatrix

Row Matrix:

Stores each row as a vector object
vector objects

50, 2.1, 9.7, 10.6
(50, 2.1, 9.7, 106, ]
25 77, 34, 98, ]
22, 51, 67, 10, ] ‘ 25, 77, 34, 98
]

0.1, 92, 64 11.1
22, 51, 67, 10

0.1, 9.2, 6.4, 11.1

LabeledPoint

LabeledPoint is another important data type
it's a specialized vector that includes label and a feature vector

Training and Validation Data

split the data into training and validation sets



training set is used to train the model and a validation set is used to see how well the model
performs on data that wasn't used to train it

the usual split ration is 80% for the training set and 20% for the validation set
Predication

you can now use the trained model to predict target values of vectors in the validation set by
running predict on every element

you can see how well the model is doing on the validation set by examining the contents of
validPredicts:

Model Evaluataion

Some predictions are close to original labels, and some are further off. To quantify the
success of your model, calculate the root mean squared error (root of the cost function
defined previously)



How to build your IT infrastructure?

Buy servers

how many? how much memory, disk, CPU, GPU?

how many users (particularly for special occasions)

Simple solution: provision for peak load, but underutilize in most times
Build a data center

where to physically put the servers?

what if the machines are crashed?

what if we need a software upgrade

cooling techniques

skilled engineers
Soln: All is possible without clod but at what cost?

Cloud Computing

Pre-Cloud
buying renting

AED. o
e ]

cloud computing is about buying vs renting

instead of buying hardware, just renting an instance from a cloud provider (Amazon AWS,
Google Cloud)

“Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction.”

Key Characteristics

Pay as you go
only pay for what you use with fine-grained metering, no up-front commitment (CPU
per hour, memory per GB)
Elasticity



users can release resources if not needed or request additional resources if
needed, ideally automatically (severless computing)

Virtualization
all the resources (cpu, memory, disk, network) are virtualized, no software is
bounded to hardware
resources are pooled to serve multiple users (multi-tenancy)

Automation
No human interaction (start/stop a machine, crash, backup)
everything is managed by cloud providers

Cloud Native Databases

Treat each cloud machine the same as in-house machine

run existing database systems directly

Cloud-native dbs are re-architectured to fully leverage the cloud infrastructure
resource/storage disaggregation

resource/storage pooling

Storage-compute separation
-Independent scaling
- Better resource utilization

(compute) @E 1\
Small local disk

Implications

DB software level needs to be aware of the underlying hardware-level resource
disaggregation

software level disaggregation

in order to enable more optimizations
Distributed database architecture needs to be changed

from shared nothing to shared storage



System Architecture

— g — - —mm= = e —mmee — — - — - —

Storage & compute disaggregation in the cloud

Compute (master) Compute (replica)

Godal
Reduce network I/O

Distt Storage Engine age

Main idea:

Log is the database

only write redo logs on network

push log applicator to storage tier
Asynchronous processing

materialize pages in background
Buffer cache

to avoid network 1/0

can rad pages upon cache miss

I/O traffic in traditional DB

Mirrored MySQL
e redo log s data
Active — Standby
Instance p | Instance bin log sl double-write
nlﬂ ° —> frm files
Amazon v_
Elastic Block EBS
Store (EBS)
©) | ﬁ 1l (5] * Step 1, 3, 4 are synchronous
\ A 4 \ A . .
=y P + Amplifies both latency and jitter
Amazon $3

I/O traffic in Aurora

Only write redo log records



all steps asynchronous
4/6 quorum storage
7.7X less data movement

Writes

writes (trxns) send logs to storage asynchronously
durability: each log is durable (ack) with 4/6 quorums
Volume Durable LSN (VDL)

Log records can be lost, out of order

VDL: the largest one with all prior LSNs are durable

Transaction Commits

transaction commits asynchronously
when a transaction commits, mark its commit LSN
commit only if VDL >= commit LSN

Replication: Scalability

1 writer and up to 15 reader instance
To keep data consistent between writer and readers
writer sends logs to readers at the same time
once the reader receives logs, it will check if the page is in the cache

replication lag: 20ms

Reads (Caching)

Each reader instance has a buffer (cache)
upon read, check cache first
the cache is supposed to contain the latest data pages
except replication lags
What if the cache is full?
always evict a clean page: a page that's durable (pageLSN <= VDL)
Why? O.w need to write dirty pages to storage, which increases network overhead

Crash Recovery

if writer (master) is crashed, detected by HM (health monitor), promote a reader to writer
first, and perform recovery
what if the failed writer comes back? -> contact HM

sometimes two master -> many unexpected issues



Crash Recovery

Traditional Databases Aurora
 Have to replay logs since the last * No need to generate pages during
checkpoint recovery (very fast)

. . . * Just need to re-establish VDL = make
Typically S minutes between sure storage is consistent

checkpoints .
) . . * Generate pages asynchronously, in
* Single-threaded in MySQL; requires a parallel

large number of disk accesses * DB engine undo partial transactions

* Typically a few seconds

N

A Customer
Application \
)
Customer VPC /

Primary RW DB Secondary RO DB
Aurora Aurora
MySQL MySQL

Storage VPC
< —
! B Re e '
S3

Up to 5x faster than Cloud MySQL, but how about MySQL with local SSDs?



Comments on Aurora

* New way of building cloud DB systems
- Monolithic (since 1970s) = disaggregation
-Hardware & software

* Widely adopted in industry
- Microsoft Socrates DB
- Alibaba PolarDB

-Huawei TaurusDB



Hadoop is an open-source software framework that is used for storing and processing large
amounts of data in a distributed computing environment. It is designed to handle big data and is
based on the MapReduce programming model, which allows for the parallel processing of large
datasets. Its framework is based on Java programming with some native code in C and shell
scripts.

Hadoop is designed to process large volumes of data (Big Data) across many machines without
relying on a single machine. It is built to be scalable, fault-tolerant and cost-effective. Instead of
relying on expensive high-end hardware, Hadoop works by connecting many inexpensive
computers (called nodes) in a cluster.

Hadoop Architecture

Hadoop has two main components:

**Hadoop Distributed File System (HDFS):** HDFS breaks big files into blocks and
spreads them across a cluster of machines. This ensures data is replicated, fault-tolerant
and easily accessible even if some machines fail.

**MapReduce:** MapReduce is the computing engine that processes data in a distributed
manner. It splits large tasks into smaller chunks (map) and then merges the results
(reduce), allowing Hadoop to quickly process massive datasets.

Hadoop Distributed File System (HDFS)

HDFS is the storage layer of Hadoop. It breaks large files into smaller blocks (usually 128 MB
or 256 MB) and stores them across multiple DataNodes. Each block is replicated (usually 3
times) to ensure fault tolerance so even if a node fails, the data remains available.

**Key features of HDFS:**

**Scalability:** Easily add more nodes as data grows.
**Reliability:** Data is replicated to avoid loss.
**High Throughput:** Designed for fast data access and transfer.

MapReduce
MapReduce is the computation layer in Hadoop. It works in two main phases:

**Map Phase:** Input data is divided into chunks and processed in parallel. Each mapper
processes a chunk and produces key-value pairs.



**Reduce Phase:** These key-value pairs are then grouped and combined to generate final
results.

This model is simple yet powerful, enabling massive parallelism and efficiency.

**Advantages:**

**Scalability:** Easily scale to thousands of machines.

**Cost-effective:** Uses low-cost hardware to process big data.

**Fault Tolerance:** Automatic recovery from node failures.

**High Availability:** Data replication ensures no loss even if nodes fail.
**Flexibility:** Can handle structured, semi-structured and unstructured data.

**Open-source and Community-driven:** Constant updates and wide support.

**Disadvantages:**

Not ideal for real-time processing (better suited for batch processing).
Complexity in programming with MapReduce.
High latency for certain types of queries.

Requires skilled professionals to manage and develop.



Problem 1 [20 points]

Hadoop MapReduce is a popular framework for big data analytics. In the lecture, we covered a
simple example of WordCount that counts the number of times each word occurs in the input set
of files. In this problem, we extend WordCount to include document IDs.

In particular, assume that you are given a collection of input documents and there are no
duplicated words in the same file, but the same word might appear in different files. The problem
is to compute for each word the documents that contain the word. You only need to show the
document IDs where the corresponding documents contain the word.

Example Input. Assume that there are three documents:

e Doc 0: “Hello World”

e Doc 1: “Hello Data”

e Doc 2: “Big Data”

Example Output. The expected output (without particular ordering) is:
e Hello: 0, 1

e World: 0

e Data: 1, 2

e Big: 2

That’s because the word “Hello” appears in both document 0 and 1. “Data” appears in both
document 1 and 2. “World” appears in document 0 and “Big” appears in document 2.

a. [8 points| Briefly explain your idea to solve the problem using Hadoop MapReduce.
Answer:

Map: The Map phase reads each line of the document and emits tuples in the form (word,
ID), where word is each word appearing in that line.

Reduce: The Reduce phase takes these tuples, groups them by word, and then writes the
results as (word, sorted set of IDs).



b. [12 points] Write down the Map() function and Reduce() function to perform the above task
using Hadoop MapReduce. You can write pseudocode.

Answer:

def map(ID, lines):
for w in lines.split():
print ((w, ID), stdout)

def reduce(word, IDs):
sorted_IDs = sorted(list(set(IDs)))
print (f"{word}: {*sorted_IDs}")



Problem 2 [20 points]

Crash recovery is important in big data analytics. In this course, we covered failure handing in

databases, Hadoop, and Spark. But they have different ways to handle failures and we have to
understand why.

a. [10 points] If you compare databases with Hadoop, what’s the difference of handing crash
recovery? and why? You may explain the pros and cons of the approaches they used.

Answer:

Databases

e Pros: Using transactions and logs for crash recovery is more reliable and maintains data
consistency.

e Cons: Without replicas, restarting a failed operation can be costly and slow down the
system.

Hadoop

e Pros: Due to the presence of replicas, Hadoop can recover from failures by switching to a
replica without terminating the current process.

e Cons: This approach requires additional storage to maintain the extra replicas.



b. [10 points] If you compare Hadoop with Spark, what’s the difference of handing crash
recovery? and why? You may explain the pros and cons of the approaches they used.

Answer:
Hadoop

e Pros: By using replicas, Hadoop can recover from failures without restarting the entire
process, simply switching to a replica.

e Cons: Maintaining these replicas requires additional storage.
Spark
e Pros: Spark’s use of cached intermediate RDDs allows for rapid recovery after a failure.

e Cons: Tracking lineage information for each operation can increase the overall time com-
plexity.



Problem 3 [20 points]
In this problem, you will answer questions related to HBase.

a. [10 points] Conceptually, HBase and databases are two approaches to store tables with
columns and rows. What're the advantages of HBase over databases in storing tables? In
other words, when to use HBase over traditional database systems?

Answer:

HBase is especially useful when dealing with extremely large tables in terms of both rows
and columns, and when these tables contain many empty (sparse) cells. It can also handle
structured, semi structured, and unstructured data efficiently, providing high performance
random access in such scenarios.



b. [10 points] If you compare HBase with HDFS, what’re the pros and cons of the two ap-
proaches to store large-scale data?

Answer:
HBase
e Pros: Provides fast random access to specific pieces of data.

e Cons: Less efficient for purely sequential reads and writes, and requires more complex setup
and maintenance compared to HDFS.

HDFS
e Pros: Offers very fast sequential data access, making it efficient for bulk reads and writes.

e Cons: Provides slow random access due to its design for batch-oriented processing rather
than point queries.



Problem 4 [20 points]
In this question, you will answer questions related to Spark.

a. [5 points] RDDs are fundamental to Spark. Why are RDDs important to Spark?

Answer:

RDDs are fundamental to Spark because their in-memory computation reduces disk I/0,
speeding up processing. They also provide built-in fault tolerance, ensuring data recovery in
the event of failures. By supporting parallel processing through partitioning, RDDs optimize
resource usage. Additionally, they minimize redundant computations and help maintain data

consistency.

b. [5 points] Spark uses lazy evaluation to execute the jobs. Explain why.

Answer:

Spark employs lazy evaluation in executing jobs, which enables it to optimize processes and
sidestep superfluous computations. This approach ensures that Spark caches only the results
essential for the final computation. Such a strategy leads to a more efficient utilization of

resources.



c. [10 points] Spark lineage graph includes two types of dependencies: narrow dependency and
wide dependency. For the distributed join operation, which dependency does it belong to?
Choose only one answer from the following list.

(1) narrow dependency;

(2) wide dependency;

(3) Both narrow and wide dependency.

Explain why.

Answer: (3) Both narrow and wide dependency.

If the data partitioning and join keys are such that each partition of the parent RDD is used
by at most one partition of the child RDD, then the distributed join operation in Spark has
a narrow dependency. Otherwise, it has a wide dependency. It is also possible for the same
operation to exhibit both narrow and wide dependencies.

Narrow Dependency: If the join keys align with the partitioning keys, the join can be per-
formed entirely within each partition, without accessing data from other partitions or nodes.
In this scenario, each partition of the parent RDD corresponds to at most one partition of
the child RDD, resulting in a narrow dependency.

Wide Dependency: If the join keys do not align with the partitioning keys, Spark must
reshuffle the data across different partitions or nodes to gather all the relevant keys for the
join. This scenario creates a wide dependency, as it involves combining data from multiple
partitions and often requires significant data movement across the cluster.



Problem 5 [20 points]

a. [10 points] Spark GraphX uses the BSP (Bulk Synchronous Processing) model as the un-
derlying computation model. Explain the pros and cons of BSP.

Answer:

Pros:

e Simplicity: The structure is easy to understand.

e Fault Tolerance: Improved detection and recovery from failures.

e Synchronization Barriers: Makes failure detection and recovery more manageable.

e Scalability: Efficiently handles large-scale workloads.

Cons:

e Synchronization Overhead: May cause inefficiency due to waiting at synchronization points.

e Workload Distribution Issues: Efficiency drops if tasks complete at significantly different
times.

b. [10 points] Cloud-native databases are designed to separate the storage engine from the
compute engine. Explain the pros and cons of this architecture.

Answer:

e Pros: Storage and compute resources can be customized separately, allowing for more precise
resource management.

e Cons: Increased reliance on network performance and stability, which can affect overall
system efficiency.
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Problem 3 [20 points]

Consider relations R(a,b) and S(a, ¢, d) to be joined on the common attribute a. Assume that there
are no indexes available on the tables to speed up the join algorithms.

e There are B = 36 pages in the buffer
e Table R spans M = 1800 pages with 100 tuples per page
e Table S spans N = 600 pages with 60 tuples per page

Answer the following questions on computing the I/O costs (in terms of number of pages) for
the joins. You can assume the simplest cost model where pages are read and written one at a time.
You may ignore the cost of the writing of the final results.

Some numbers Here are some numbers that may be useful in this problem:

o 1500 — 50; 1800 = 51.4; 1800 — 52.9; 1800 — 54.5; 1800 — 56.3

o 80 =16.7; G2 =17.1; G =17.6; G2 =18.2; G =188

e logss 50 = 1.1; logss 51 = 1.1; logss 52 = 1.1; logss 53 = 1.1; logss 54 = 1.1; logss 55 = 1.1;
10g35 56 = 11, 10g35 57 =1.1

e logs, 50 = 1.1; logs, 51 = 1.1; logs, 52 = 1.1; logs, 53 = 1.1; logs, 54 = 1.1; logs, 55 = 1.1;
logs, 56 = 1.1; logs, 57 = 1.1

® 10g35 16 = 08, 10g35 17 = 087 10g35 18 = 08, 10g35 19=0.8

e logs, 16 = 0.8; logs, 17 = 0.8; logs, 18 = 0.8; logs, 19 = 0.8

Questions

a. [6 points] For the Grace hash join algorithm (with S as the outer relation and R as the inner
relation), what is the I/O cost of partition phase? What is the I/O cost of the probe phase?

Solution:
Partition Cost: 2 x (M + N) = 2 % (1800 + 600) = 4800
Probe Cost: M + N = 1800 + 600 = 2400
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b. [5 points] For the block nested loop join with R as the outer relation and S as the inner
relation, what is the I/O cost?

Solution:

M + [M57] % N = 1800 + [15907 % 600 = 1800 + 31800 = 33600

c. [9 points] For the sort-merge join with S as the outer relation and R as the inner relation,
what is the I/O cost of sorting S? What is the I/O cost of sorting R? What is the I/O cost
of merging?

Solution:

Sorting S:

passes = 1+ [logg_y ([51)] =1+ [loggs; ([551)] = 1 + [logs; 17] =1+ [0.8] =2
2N X passes = 2 % 600 x 2 = 2400

Sorting R:

passes = 1+ [logp_y ([41)] = 3

2M X passes = 2 * 1800 x 3 = 10800

Merging:

M + N = 1800 + 600 = 2400

Page 7 of Page@



High Dimensional Vector Data

Data -> Vector -> Analytics, this is know as vector embedding

Vector DBs can address many critical limitations of LLMs

hallucination: incorrect or fabricated answer

lacking domain-specific knowledge
up-to-date information

Prompt

“Answer the question
using the additional
context :

{user Question}
{Retrieved Doc 1}

User Question

.("Rotrlcvod Doc n}”
znzcioud \@CtOr DB

Private Data / Domain-Specific Knowledge
| up-To-Date Information

How to find similar vectors ?

High dimension
top k similar vectors

» lum » | Answer

RAG (Retrieval-Augmented
Generation)

Euclidean distance  d(A.B) = | > (A; — B;)?

=1
"~ A,B,
Cosine similarity cos(f) = AlBl - -
> ALY B
i=1 i=1
Dot product dot(A.B) = Y A;- B
1=1

sometimes you don't even know the exact answer (personalized recommendation)

sometimes we just need fast performance



hard to have both

Indexing and Searching

query
/

INDEX

\
f

DATABASE

Preprocessing stage (offline): build index
build a proper index on the data vectors
we don't care too much about the time spent here
Online search stage
given a query, search the index to know potentially relevant vectors
this can filter out many non-relevant vectors

this stage is more important
Evaluation Metrics

Query time -> performance
space overhead, especially memory overhead -> cost
Accuracy

the ratio between the returned results vs the true top k results
Others

index construction time
update cost: new vectors

The outiline:

introduction
main memory vector index
disk based vector index



vector search in databases

Vector indexes (main memory)

Quantization based indexes (widely used in vector DBs, IVF_FLAT, IVF_PQ)

Graph Based Indexes (NSW, HNSW, also used widely in vector DBs)
tree-based indexes

hash-based indexes

Quantization is a way of approximation

* Let’s look at quantization in 1-dimensional space

-0kx) = {%J where x is an input value

—input =3, 0Q3) = {%‘ =10.3] =0
. 91
—input =3, 091) = {E‘ =19.1] =9
- Those 99 integers can be quantized into a smaller set of 10

buckets

Quantization in high dimensional space

it's basically clustering (k-means)

oV, N,
’ \
I xc1 '
X [
(8]
\ ® /
.q \ VS Vs//

// \\ ///;‘\\\
,/oV0 \ , V7 N,
/ V1\ / \
| X | | XC \
\v co | \v8 2 |
\ 2 / \ (8] /
\\. 3/, \\ vg/.//

IVF_FLAT

index phase
cluster n vectors into k clusters (quantization)

10,
11,
12,

19,

90,
91,

[ 99 |




centroids: c0, ..., ck-1

Search phase
given a query q, find the closest u clusters based on centroids
u: user-defined parameter

only scan the vectors in the u clusters
But how do we quickly compute the similarity between q and a vector vi, in a cluster?

A naive approach:

A for-loop to compute dist(q,vj)
d steps (where d is dimensionalty, d = 100)

Since we know the centroid ¢, we can pre compute the distance of (c,vj)
then dist(q,vi) = dist(q,c) + dist(c,vi)

Now we only need 1 step (instead of d steps) to compute distance!
With compression we can reduce the space overhead of IVF_FLAT

Example: YouTube 8M data includes 1.4 billion vectors
each vector takes 1024 dimensions (each float takes 32 bits)
5.6TB space memory !

Basic Idea of Compression

instead of using 32 bits to represent a float number

use L bits (L=8)

think of 1-d quantization

every float number in a vector is quantized into (0...2"L-1)
The 1.4 billion vectors will take 1.4TB space (if L=8)

vector

VYVVYVYVYVYYYY

Every float number is
mapped to [0...255]
(8 bits per number)



Compression: Product Quantization (PQ)
main idea: compress between multiple dimension together

every vector is partitioned into M subvectors, M=8

every subvector is compressed together using L bits

To compress subvectors

Each vector vi is partitioned into M subvectors (0 to m-1) (m subspace)

all the vectors in the same subspace are compressed together using high dimensional
quantization clustering (clustering)

= Allv), v), v)..., v°_, are compressed together
- All vy, v}, v}..., v)_, are compressed together
- Every subvector is represented using the centroid ID

K-means clustering
(every subvector is
encoded using
the centroid ID)

T

K-means clustering
(every subvector is
encoded using
the centroid ID)

I

Every vector is split into 2 parts: head and tail vector
All the head vectors will be compressed together
All the tail vectors will be compressed together

subspace 1 subspace 2
G . G oG,
R cie. )
' ci . . : :.t. 3 + c.+.
.0.4'&3 "o cz ¢ .C;
. . 1
<5.53, 7.65, 9.04, 6.80> B
A\ /o J

"
the subvector
in subspace 1

W
the subvector
in subspace 2

C]:=<2.25,2.51>
C}:=<8.35,0.37>
Ci:=<5.00, 6.19>
C1:=<8.86, 5.00>

C3:=<9.10, 7.29>
C}:=<7.76,1.98>
C3:=<0.98, 6.36>
C3:=<1.29, 0.60>

PQ-code: (3, 1)

indexes of nearest centroids in
1
each subspace (C; and C; resp.)

Original vector is compressed as <5.00, 6.19, 9.10, 7.29>

Each vector is compressed using M * L bits (M=8, L=8)

Regardless of the dimensionality



but the parameters can be tuned based on dimensionality
example: consider the 1.4 billion vectors again

each vector will take 8 * 8, (8 bytes)
the 1.3 billion vectors will take 11.2GB space

Very good way of compression
Another benefit of PQ: Fast distance computation

all the distance in subspace can be precomputed
Example:

* Vector X > PQ code (3, 1)
 VectorY - PQ code (1, 5)

IVF_PQ

similar to IVF_FLAT
difference is that
each cluster applies PQ
but using residual vectors (instead of the original in the cluster)

Search process is the same
Graph-Based Vector Index

main idea
for each vector, pre-compute the nearest neighbor
connect them using a graph

convert vector search problem to graph traversal problem

E G C\B

L -

- — D

Navigable small worlds(NSW)
add new vertices to the index



for each new vertex (vector), find the closest m neighbors seen so far and connect with
them

Balance: index construction time and query performance
Can be extended to KNN by maintaining a result set and a candidate set

terminate if the min distance in the result set > max distance in the candidate set

* q: candidate queuve (min-heap)

- Each heap stores the vector and distance to
the query

 Stop condition

- unseen nodes won't be in top k
Initially, g = {1}, topk = {}
Let x = pop min from g, which is 1
Check the stop condition
If met, stop

* Otherwise
- Insert x to topk

- Insert x's unvisited neighbors to q (as
candidates)

* Initially, g = {1}, topk = { }

3.4,5, 6}
* Then x = 14, which is bigger than 7 (the

(finding fop-3) « 5  No need to check the candidates
anymore



